版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江大學(xué)光電信息系1集成平面光波導(dǎo)器件
主講教師:戴道鋅
教授
Email:
dxdai@
Tel:
0571‐88206516‐215主頁:/personnelCard/dxdai浙江大學(xué)光電信息系2提綱1.
課程組介紹;2.
課程簡介;3.
集成平面光波導(dǎo)器件;浙江大學(xué)光電信息系31.
課程組介紹浙江大學(xué)光電信息系41.1.
教學(xué)組
戴道鋅
Email:
dxdai@
地址:
東五教學(xué)樓光及電磁
波研究中心215房間時堯成Email:
yaocheng@地址:
東五教學(xué)樓光及電磁波研究中心113房間浙江大學(xué)光電信息系9More
information:
/dxdai/0.html浙江大學(xué)光電信息系10Publication
list浙江大學(xué)光電信息系15
15
集成光電子實驗室>2000m2實驗大樓(含500m2超凈室);>4000萬元實驗儀器設(shè)備;浙江大學(xué)光電信息系162.
課程簡介浙江大學(xué)光電信息系17課程概況
2學(xué)分:
32學(xué)時理論;
秋學(xué)期共8周的課程安排;浙江大學(xué)光電信息系18教學(xué)目的與基本要求
系統(tǒng)、深入地開展“集成平面光波導(dǎo)器件”教學(xué),使研究生對
平面光波導(dǎo)的理論基礎(chǔ)、核心集成光波導(dǎo)器件機制原理有全
面深刻的理解;
掌握集成平面光波導(dǎo)器件的設(shè)計思路與方法。
鑒于集成光波導(dǎo)器件是當(dāng)前研究熱點,本課程還將結(jié)合該領(lǐng)
域的發(fā)展歷程、最新進(jìn)展,激發(fā)學(xué)生對創(chuàng)新研究的興趣和熱
忱,培養(yǎng)學(xué)生分析問題和邏輯思維能力,促進(jìn)學(xué)生對學(xué)科發(fā)
展和學(xué)科方向的全局視野能力。浙江大學(xué)光電信息系191.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.主要內(nèi)容及學(xué)時分配
導(dǎo)論:介紹課程內(nèi)容、集成平面光波導(dǎo)器件的發(fā)展歷史、現(xiàn)狀以及展望;
平面光波導(dǎo)理論:模式求解與特性分析;
硅納米線光波導(dǎo);
新型耦合器件與原理I;
新型耦合器件與原理II;
陣列波導(dǎo)光柵器件與應(yīng)用;
光學(xué)微腔原理;
光學(xué)微腔應(yīng)用;
波導(dǎo)光柵及應(yīng)用;
光子晶體波導(dǎo)及器件;
Plasmonic波導(dǎo)及器件;
文獻(xiàn)閱讀presentation;
可調(diào)諧型集成平面光波導(dǎo)器件及機理;
光波導(dǎo)調(diào)制器;
基于平面光波導(dǎo)器件的片上光系統(tǒng)與網(wǎng)絡(luò);
復(fù)習(xí)與答疑;浙江大學(xué)光電信息系20文獻(xiàn)閱讀‐Selected
Topics
Mode
MUXer
technology,
Graphene
on
waveguides,
On‐chip
optical
force,
Active
polymer
photonics
(e.g.,
Quantum
Dots),
Plasmonic
waveguides.
浙江大學(xué)光電信息系21教材與參考文獻(xiàn)
教材
《微納光子集成》
何賽靈,戴道鋅.
科學(xué)出版社
參考書
《半導(dǎo)體導(dǎo)波光學(xué)器件理論及技術(shù)》,趙策洲,國防工業(yè)出版社。
Robert
G.
Hunsperger.
Integrated
Optics:
Theory
and
Technology
(Sixth
Edition),
ISBN
978‐0‐387‐89775‐2
(Online),
Springer
Link
2009.
《光集成器件》,小林功郎著,科學(xué)出版社,2002
《集成光學(xué)》,T.
塔米爾主編,科學(xué)出版社,1982浙江大學(xué)光電信息系22第1章.集成平面光波導(dǎo)器件導(dǎo)論浙江大學(xué)光電信息系23Motivation
for
integrated
photonics
Transmission
and
processing
of
signals
Laser
invented
in
1960s
stable
source
of
coherent
light;Free
space
light
transmission?
but
atmospheric
variations.
Signal
processing
various
components:
prisms,
lenses,
mirrors,
electro‐optic
modulators
and
detectors.1.
All
of
this
equipment
would
typically
occupy
a
laboratory
bench
tens
of
feet
on
a
side,
which
must
be
suspended
on
a
vibration‐proof
mount.2.
Such
a
system
is
tolerable
for
laboratory
experiments,
but
is
not
very
useful
in
practical
applications浙江大學(xué)光電信息系24Integrated
optics
/
photonics
Optical
integrated
circuits
(OIC’s)
or
Photonic
integrated
circuits
(PIC’s)
S.E.
Miller
in
1969
(/wiki/Stewart_E._Miller)The
integrated
optics
approach
to
signal
transmission
and
processing
offers
significant
advantages
in
both
performance
and
cost
when
compared
to
conventional
electrical
methods.
物美價廉浙江大學(xué)光電信息系25
Stewart
E.
MillerStewart
E.
Miller
(
09/01/1918
‐02/27/1990)
was
a
noted
American
pioneer
in
microwave
and
optical
communications.Miller
was
born
in
Milwaukee,
Wisconsin.
In
1941
he
receive
his
S.B.
and
S.M.
degrees
in
engineering
at
MIT.
He
joined
Bell
Labs
to
work
on
microwave
radar,
and
became
technical
lead
for
the
B‐29's
X‐band
(3
cm)
radar
microwave
plumbing.
After
World
War
II,
he
was
instrumental
in
AT&T's
L‐3
coaxial
cable
carrier
systems,
then
transferred
to
the
Radio
Research
Department
where
he
made
advances
in
many
millimeter‐wave
components.In
the
early
1960s,
Miller
was
the
first
to
recognize
the
potential
of
optical
communications
and
as
director
of
Guided
Wave
Research,
initiated
a
program
to
investigate
a
variety
of
periodic
lens
systems.
As
optical
fiber
was
developed
in
the
late
1960s,
he
demonstrated
its
utility,
and
also
proposed
the
combining
multiple
optical
components
on
one
semiconductor
chip.
He
became
director
of
Lightwave
Research
in
1980,
retired
in
1983,
and
then
consulted
at
Bellcore
(now
Telcordia
Technologies)
analyzing
semiconductor
lasers.Miller
held
some
80
patents
and
was
a
member
of
the
National
Academy
of
Engineering,
a
Life
Fellow
of
the
IEEE,
and
a
Fellow
of
the
American
Association
for
the
Advancement
of
Science
and
the
Optical
Society
of
America.
He
received
the
Naval
Ordnance
Development
Award
in
1945,
the
1972
IEEE
Morris
N.
LiebmannMemorial
Award,
the
1975
IEEE
W.R.G.
Baker
Prize
(with
TingyeLi
and
E.A.J.
Marcatili),
the
Franklin
Institute's
1977
Stuart
Ballantine
Medal,
and
the
1989
John
Tyndall
Award
of
the
IEEE
Lasers
and
Electro‐Optics
Societyfor
distinguished
contributions
to
fiber
optics
technology.浙江大學(xué)光電信息系262013
Dr.
James
J.
Coleman
2012
John
E
Bowers2011
David
F.
Welch
2010
Dr.
C.
Randy
Giles
2009
Dr.
Joe
Charles
Campbell
2008
Robert
Tkach2007
Emmanuel
Desurvire2006
Dr.
Donald
Ray
Scifres2005
Roger
H.
Stolen
2004
Larry
A.
Coldren2003
Dr.
Andrew
R.
Chraplyvy2002
Neal
S.
Bergano2001
Tatsuo
Izawa
2000
Dr.
Stewart
D.
Personick1999
John
B.
MacChesney1998
Dr.
Kenichi
Iga1997
Prof.
Ivan
P.
Kaminow1996
Dr.
Kenneth
O.
Hill
1995
Dr.
TingyeLi1994
Dr.
Elias
Snitzer1993
Prof.
Yasuharu
Suematsu1992
Dr.
Donald
B.
Keck1991
Dr.
David
Neil
Payne1990
Thomas
G.
Giallorenzi1989
Stewart
Edward
Miller1988
Dr.
Michael
K
BarnoskiJohn
Tyndall
Award
1987
Robert
D.
Maurerwho
has
made
pioneering,
highly
significant,
or
continuing
technical
or
leadershipcontributions
to
fiber
optics
technology浙江大學(xué)光電信息系27Advantages
of
Integrated
OpticsMany
channels
multiplexed
Huge
capacity28Advantages
of
Photonics
(VS
electronics)
Immunity
from
electromagnetic
interference
(EMI)
Freedom
from
electrical
short
circuits
or
ground
loops
Safety
in
combustible
environment
Security
from
monitoring
Low‐loss
transmission
Large
bandwidth
(i.e.,
multiplexing
capability)
Small
size,
light
weight
Inexpensive,
composed
of
plentiful
materials
Major
disadvantage:
Difficult
to
use
for
electrical
power
transmission浙江大學(xué)光電信息系浙江大學(xué)光電信息系29PICs
capability
of
transmitting
fiberPICs
the
ability
to
generate
and
process
them
Advantages
Increased
bandwidthExpanded
frequency
(wavelength)
division
multiplexingLow-loss
couplers,
including
bus
access
typesExpanded
multi-path
switchingSmaller
size,
weight,
lower
power
consumption
Batch
fabrication
economy
Improved
reliability
Improved
optical
alignment,
immunity
to
vibrationMajor
disadvantage
High
cost
of
developing
new
fabrication
technologyIntegrationPhotonics浙江大學(xué)光電信息系30In
1970s,
what
happened?to
bring
integrated
optics
out
of
the
laboratory
and
into
the
realm
of
practicalapplication
Three
main
factors:
A.
Low
loss
optical
fibers
and
connectors
(Demands),
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
(Sources),
C.
Photolithographic
microfabrication
techniques
capable
of
submicron
linewidths
(Feasibility)浙江大學(xué)光電信息系A(chǔ).
Low‐loss
optical
fibers高錕,生于中國上海,光纖通訊、電機工程專家,華文媒體譽之為“光纖之父”、普世譽之為“光纖通訊之父”(Father
of
Fiber
Optic
Communications),曾任香港中文大學(xué)校長。2009年,與威拉德?博伊爾和喬治?埃爾伍德?史密斯共享諾貝爾物理學(xué)獎。
31Kao,
C.K.,
"1012
bit/s
Optoelectronics
Technology",
IEE
Proceedings,
133(3):
230‐236,
June
1986.
浙江大學(xué)光電信息系
32K.C.
Kao’s
workKao,
K.C.
and
Hockham,
G.A.,
“Dielectric‐fibre
Surface
Waveguides
for
Optical
Frequencies”,
Proc.
IEE.
113(7):
1151‐1158,
July
1966.
Kao,
K.C.
and
Davies,
T.W.,
"Spectrophotometric
Studies
of
Ultra
Low
Loss
Optical
Glasses
‐
I:
Single
Beam
Method",
Journal
of
Scientific
Instruments
(Journal
of
Physics
E),
Series
2,
1:
1063‐1068,
1968.
舉世公認(rèn)高錕是提出用纖維材料傳達(dá)光束訊號以建置通信的第一人。當(dāng)時,大家已知道可用數(shù)字或模擬的方式傳送訊息,已有人研究:透過氣體或玻璃傳送光,期望可達(dá)到高速傳輸,但無法克服嚴(yán)重衰減的問題。1965年,高錕對各種非導(dǎo)體纖維進(jìn)行仔細(xì)的實驗。按他分析,當(dāng)光學(xué)訊號衰減率能低于20dB/km時,光纖通信便可行。他更進(jìn)一步分析了吸收、散射、彎曲等因素,推論被包覆的石英基玻璃有可能滿足衰減需求。這項關(guān)鍵研究結(jié)果,推動全球光纖通訊的研發(fā)工作。1966年,高錕發(fā)表了一篇題為《光頻率介質(zhì)纖維表面波導(dǎo)》的論文,開創(chuàng)性地提出光導(dǎo)纖維在通信上應(yīng)用的基本原理,描述了長程及高信息量光通信所需絕緣性纖維的結(jié)構(gòu)和材料特性。簡單地說,只要解決好玻璃純度和成分等問題,就能夠利用玻璃制作光學(xué)纖維,從而高效傳輸信息。這一設(shè)想提出之后,有人稱之為匪夷所思,也有人對此大加褒揚。但在爭論中,高錕的設(shè)想逐步變成現(xiàn)實:利用石英玻璃制成的光纖應(yīng)用越來越廣泛,全世界掀起了一場光纖通信的革命。浙江大學(xué)光電信息系33衡特性等多個領(lǐng)域都作了成果都是使信號在無放大接纖,至1976年則達(dá)K.C.
Kao’s
work
高錕還開發(fā)了實現(xiàn)光纖通
訊所需的輔助性子系統(tǒng):
據(jù)Kao’s理論,Corning
公司R.
D.
Maurer等人1970年首次
在單模纖維的構(gòu)造、纖維
的強度和耐久性、纖維連
光器和耦合器以及擴散均
到1
dB/km的水平,為日后光纖通訊
技術(shù)的飛速發(fā)展奠定了理論基礎(chǔ)。
大量的研究,而這些研究
80年代,光纖通信技術(shù)在發(fā)達(dá)國家得到了廣泛推廣應(yīng)用。
的條件下,以高速長距離
通信的關(guān)鍵。34Low
loss
optical
fiber
connectors
PC
FC:
Ferrule
contactor
(鋼制金屬套筒)
;
PC:
Physical
contact,
RL~‐30dB;
SPC:
Super
PC,
RL~‐40dB;
UPC:
Ultra
PC,
RL~‐50dB;
APC:
Angled
PC,
RL~‐60dB;
PC:
藍(lán)色;APC:綠色;/fiber‐optic‐tutorial‐termination.aspx
浙江大學(xué)光電信息系浙江大學(xué)光電信息系35the
most
common
fiber
optic
connectors
ST
(an
AT&T
Trademark)
is
the
most
popular
connector
for
multimode
networksFC/PC
has
been
one
of
the
most
popular
singlemode
connectors
for
many
years
SC
is
a
snap‐in
connector
that
is
widely
used
in
singlemodesystems
for
it's
excellent
performance
LC
is
a
new
connector
that
uses
a
1.25
mm
ferrule,
half
the
size
of
the
STMT‐RJ
is
a
duplex
connector
with
both
fibers
in
a
single
polymer
ferrule
Opti‐Jack
is
a
neat,
rugged
duplex
connector
Volition
is
a
slick,
inexpensive
duplex
connector
that
uses
no
ferrule
at
all
E2000/LX‐5
is
like
a
LC
but
with
a
shutter
over
the
end
of
the
fiber
MU
looks
a
miniature
SC
with
a
1.25
mm
ferrule.
It's
more
popular
in
Japan.MT
is
a
12
fiber
connector
for
ribbon
cable.
It's
main
use
is
for
preterminated
cable
assemblies.
浙江大學(xué)光電信息系36
B.
Reliable
CW
GaAlAs
and
GaInAsP
laser
diodes
Basov
and
Javan
proposed
the
semiconductor
laser
diode
concept.
In
1962,
Robert
N.
Hall
demonstrated
the
first
laser
diode
device,
made
of
gallium
arsenide
and
emitted
at
850
nm
the
near‐infrared
band
of
the
spectrum.
Later,
in
1962,
Nick
Holonyak,
Jr.
demonstrated
the
first
semiconductor
laser
with
a
visible
emission.
This
first
semiconductor
laser
could
only
be
used
in
pulsed‐beam
operation,
and
when
cooled
to
liquid
nitrogen
temperatures
(77
K).
In
1970,
Zhores
Alferov,
in
the
USSR
(Union
of
Soviet
Socialist
Republics
),
and
Izuo
Hayashi
and
Morton
Panish
of
Bell
Telephone
Laboratories
also
independently
developed
room‐temperature,
continual‐operation
diode
lasers,
using
the
heterojunction
structure./wiki/Laser37Basov
and
Javan
proposed
the
semiconductor
laser
diode
concept.Nikolay
Gennadiyevich
Basov
(Russian;
12/14/1922‐07/01/2001)
was
a
Sovietphysicist
and
educator.
For
his
fundamental
work
in
the
field
of
quantum
electronics
that
led
to
the
development
of
laser
and
maser,
Basov
shared
the
1964
Nobel
Prize
in
Physics
with
Alexander
Prokhorov
and
Charles
Hard
Townes.Ali
Mortimer
Javan
(born
12/26/1926)
is
an
Iranian
American
physicist
and
inventorat
MIT.
His
main
contributions
to
science
have
been
in
the
fields
of
quantum
physicsand
spectroscopy.
He
co‐invented
the
gas
laser
in
1960,
with
William
R.
Bennett.
Ali
Javan
has
been
ranked
Number
12
on
the
list
of
the
Top
100
living
geniuses.浙江大
MicrowaveLaser:
Light
Amplification
by
Stimulated
Emission
of
Radiation;Maser:
學(xué)光電信息系
Amplification
by
Stimulated
Emission
of
Radiation浙江大學(xué)光電信息系38First
helium‐neon
laser,
1960.First
helium‐neon
laser.
Left
to
right:
US
physicist
Donald
R.
Herriott
(1928‐2007),
Iranian‐US
physicist
Ali
Mortimer
Javan
(born
1926)
and
US
physicist
William
R.
Bennett
(1930‐2008),
with
the
first
helium‐neon
laser.
/media/147086/enlarge浙江大學(xué)光電信息系39Heterojunction
structureHerbert
Kroemer
(born
08/25/1928),
a
professor
at
UC,
Santa
Barbara,
received
his
Ph.D.
in
theoretical
physics
in
1952
from
the
University
of
G?ttingen,
Germany,
with
a
dissertation
on
hot
electron
effects
in
the
then‐new
transistor,
setting
the
stage
for
a
career
in
research
on
the
physics
of
semiconductor
devices.
In
2000,
the
Nobel
Prize
in
physics
was
awarded
jointly
to
Herbert
Kroemer
(UC
Santa
Barbara,
USA)
and
Zhores
I.
Alferov
(Ioffe
Institute,
Saint
Petersburg,
Russia)
for
"developing
semiconductor
heterostructures
used
in
high‐speed‐
and
opto‐electronics"
Zhores
Ivanovich
Alferov
(Russian,
Belarusian;
born
03/15/1930)
is
a
Sovietand
Russian
physicist
and
academic
who
contributed
significantly
to
the
creation
of
modern
heterostructure
physics
and
electronics.
浙江大學(xué)光電信息系40C.
Microfabrication
techniques
depositing
a
film,
patterning
the
film
with
the
desired
micro
features,
and
removing
(or
etching)
portions
of
the
film.For
memory
chip
fabrication:
~30
lithography
steps,
~10
oxidation
steps,
~20
etching
steps,
~10
doping
steps,
and
many
others.浙江大學(xué)光電信息系41Comparison
of
sizes
of
semiconductor
manufacturing
process
nodeswith
some
microscopic
objects
and
visible
light
wavelengths
Can
size
reduction
go
further?
Moore’s
law
might
expire.
Photonics
will
replace
electronics?
Optical
interconnects浙江大學(xué)光電信息系42
In
1980sOptical
fibers
largely
replaced
metallic
wires
in
telecommunications,A
number
of
manufacturers
began
production
of
PICs
for
use
in
a
variety
of
applications浙江大學(xué)光電信息系43
In
1990sThe
incorporation
of
optical
fibers
into
telecommunications
and
data‐transmission
networks
has
been
extended
to
the
subscriber
loop
in
many
systems.
This
provides
an
enormous
bandwidth
for
multichannel
transmission
of
voice,
video
and
data
signals.
Access
to
worldwide
communications
and
data
banks
has
been
provided
by
computer
networks
such
as
the
Internet.
We
are
in
the
process
of
developing
what
some
have
called
the
“Information
superhighway.”
The
implementation
of
this
technology
has
provided
continuing
impetus
to
the
development
of
new
integrated
optic
devices
and
systems
into
the
beginning
years
of
the
21st
century.Another
technological
advance
that
has
encouraged
the
development
of
new
integrated
optic
devices
in
recent
years
is
the
availability
of
improved
fabrication
methods.
Microtechnology,
which
involves
dimensions
on
the
order
of
micrometers,
has
evolved
into
nanotechnology,
in
which
nanometer‐sized
features
are
routinely
produced.
This
new
area
of
nanophotonics,
which
includes
the
fabrication
of
photonic
crystals.浙江大學(xué)光電信息系44Material
for
PIC’s
Electronics
IC:
silicon,
…
For
PIC’s:
No
one
substrate
material
will
be
optimum
for
all
elements.
浙江大學(xué)光電信息系45Hybrid
Versus
Monolithic
Approach
Hybrid
‐
two
or
more
substrate
materials
are
somehow
bonded
together
to
optimize
performance
for
different
devices;
Advantage:
using
existing
technology,
piecing
together
devices
which
have
been
substantially
optimized
in
a
given
material
Disadvantage:
misalignment,
or
even
failure,
because
of
vibration
and
thermal
expansion.
Monolithic
‐
a
single
substrate
material
is
used
for
all
devices;
Advantage:
cheaper,
reliable.
浙江大學(xué)光電信息系46
III–V
and
II–VI
Ternary
SystemsFor
a
system:
light
emitter
+
waveguide
+
detector
The
energy
bandgap
of
the
material
can
be
changed
over
a
wide
range
by
altering
the
relative
concentrations
of
elements.
gallium
aluminum
arsenide,
Ga(1?x)AlxAs.
gallium
indium
arsenide
phosphide,
GaxIn(1?x)As(1?y)Py.浙江大學(xué)光電信息系47Silicon
is
cheaper
than
other
semiconductors浙江大學(xué)光電信息系48浙江大學(xué)光電信息系49
Silicon
photonicsA
new
technology
platform
to
enable
low
cost
and
high
performance
photonics
Low‐cost
because
of
the
CMOS‐compatible
fabrication
processes
(Photonic
devices
produced
within
standard
silicon
factory
and
with
standard
silicon
processing);
Low‐loss
waveguides;
Ultra‐high
index
contrast
enables
ultra‐sharp
bending,
ultrasmall
devices
size.
However,
for
active
devices
(lasers,
modulators,
photodetectors),
what
is
the
solution?
There
are
several
promising
approaches
for
these
issues.
50
Silicon
photonicsIn
the
last
few
years,
silicon
has
become
an
important
material
for
integrated
photonics
with
several
breakthroughs
in
the
field
of
high‐speed
optical
modulators,
integrated
germanium
detectors
and
even
light
sources.
High‐contrast
silicon
on
insulator
(SOI)
waveguides
allow
to
miniaturize
photonic
functions,
which
enables
larger‐scale
integration
for
photonics.
The
resulting
ultra‐compact
photonic
integrated
circuits
can
be
used
for
telecom,
datacom,
(bio)‐sensing,
and
biomedical
applications.
The
CMOS
compatible
processing
requirements
allow
the
reuse
of
the
huge
technology
base
for
submicron
mass‐fabrication.
浙江大學(xué)光電信息系http://www.imec.be/ScientificReport/SR2008/HTML/1224982.html浙江大學(xué)光電信息系51What
is
driving
silicon
photonics?
Data‐com,
super‐computing浙江大學(xué)光電信息系52Optical
communication
network
(scaling
down)
Short‐distanceThe
fiber
to
the
home
Long‐haul
(WDM
+
EDFA)New
services:
high‐sp
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝設(shè)計教師招聘協(xié)議
- 教育機構(gòu)加班安排細(xì)則
- 濕地保護(hù)與恢復(fù)承諾書
- 臨時出差應(yīng)急處理
- 汽車制造外網(wǎng)施工合同
- 旅游景區(qū)安全事故防范與應(yīng)對
- 船舶制造審計處罰管理辦法
- 退房協(xié)議書中義務(wù)聲明
- 旅游景區(qū)招投標(biāo)管理規(guī)程
- 2024年04月北京中國郵政儲蓄銀行北京分行社會招考(420)筆試歷年參考題庫附帶答案詳解
- 基于PLC的智能照明控制系統(tǒng)研究(完整資料)
- 2023學(xué)年統(tǒng)編版高中語文選擇性必修中冊第三單元文言文句子翻譯練習(xí)及答案-
- 福建省南平市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃代碼
- 勵志演講講稿
- 附件2.2021年全省文化旅游融合示范項目績效目標(biāo)表
- 金融科技課件(完整版)
- 頂管施工技術(shù)全面詳解
- 東北石油大學(xué)學(xué)業(yè)預(yù)警、留級與退學(xué)制度修訂情況說明
- 超導(dǎo)材料簡介及說明
- 護(hù)士工作量統(tǒng)計表
- 中價協(xié)[2013]35號造價取費
評論
0/150
提交評論