2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆安徽省滁州市部分高中高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知F(3,0)是橢圓的一個(gè)焦點(diǎn),過(guò)F且垂直x軸的弦長(zhǎng)為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=12.已知點(diǎn)是雙曲線的左焦點(diǎn),定點(diǎn),是雙曲線右支上動(dòng)點(diǎn),則的最小值為().A.7 B.8C.9 D.103.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為A.2 B.3C.4 D.54.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.5.如圖所示,直三棱柱中,,,分別是,的中點(diǎn),,則與所成角的余弦值為()A. B.C. D.6.在等差數(shù)列中,,表示數(shù)列的前項(xiàng)和,則()A.43 B.44C.45 D.467.已知函數(shù),若存在唯一的零點(diǎn),且,則的取值范圍是A. B.C. D.8.橢圓上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則到另一個(gè)焦點(diǎn)的距離是()A. B.C. D.9.如圖,在正方體中,點(diǎn)E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.10.已知一個(gè)乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來(lái)高度的倍,則當(dāng)它第8次著地時(shí),經(jīng)過(guò)的總路程是()A. B.C. D.11.曲線在處的切線的斜率為()A.-1 B.1C.2 D.312.經(jīng)過(guò)點(diǎn)作圓的弦,使點(diǎn)為弦的中點(diǎn),則弦所在直線的方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長(zhǎng)為2的正方體中,E,F(xiàn)分別為棱、的中點(diǎn),G為面對(duì)角線上一個(gè)動(dòng)點(diǎn),則三棱錐的外接球表面積的最小值為_(kāi)__________.14.若函數(shù)的遞增區(qū)間是,則實(shí)數(shù)______.15.已知直線與圓:交于、兩點(diǎn),則的面積為_(kāi)_____.16.已知是雙曲線的左、右焦點(diǎn),若為雙曲線上一點(diǎn),且,則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1是,,,,分別是邊,上兩點(diǎn),且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn),,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點(diǎn),使二面角大小為?若存在,請(qǐng)指出點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.19.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長(zhǎng)為米表示劣弧與弦所圍成陰影部分的面積.(1)請(qǐng)寫(xiě)出函數(shù)表達(dá)式;(2)用求導(dǎo)的方法證明.20.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和21.(12分)已知圓,直線.(1)當(dāng)為何值時(shí),直線與圓相切;(2)當(dāng)直線與圓相交于、兩點(diǎn),且時(shí),求直線的方程.22.(10分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點(diǎn),(1)證明:(2)若平面平面ACE,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C2、C【解析】設(shè)雙曲線的右焦點(diǎn)為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點(diǎn)共線時(shí)取得最小值即可得解.【詳解】∵是雙曲線的左焦點(diǎn),∴,,,,設(shè)雙曲線的右焦點(diǎn)為M,則,由雙曲線的定義可得,則,所以,當(dāng)且僅當(dāng)A、P、M三點(diǎn)共線時(shí),等號(hào)成立,因此,的最小值為9.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長(zhǎng)度和、差的最值,都可以通過(guò)相應(yīng)的圓錐曲線的定義分析問(wèn)題;(2)圓外一點(diǎn)到圓上的點(diǎn)的距離的最值,可通過(guò)連接圓外的點(diǎn)與圓心來(lái)分析求解.3、D【解析】拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.4、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.5、A【解析】取的中點(diǎn)為,的中點(diǎn)為,然后可得或其補(bǔ)角即為與所成角,然后在中求出答案即可.【詳解】取的中點(diǎn)為,的中點(diǎn)為,,,所以或其補(bǔ)角即為與所成角,設(shè),則,,在,,故選:A6、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.7、C【解析】當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)和,不滿足題意,舍去;當(dāng)時(shí),,令,得或.時(shí),;時(shí),;時(shí),,且,此時(shí)在必有零點(diǎn),故不滿足題意,舍去;當(dāng)時(shí),時(shí),;時(shí),;時(shí),,且,要使得存在唯一的零點(diǎn),且,只需,即,則,選C考點(diǎn):1、函數(shù)的零點(diǎn);2、利用導(dǎo)數(shù)求函數(shù)的極值;3、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性8、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個(gè)焦點(diǎn)的距離是.故選:B.9、B【解析】建立空間直角坐標(biāo)系,利用向量夾角求解.【詳解】以為原點(diǎn),為軸正方向建立空間直角坐標(biāo)系如圖所示,設(shè)正方體棱長(zhǎng)為2,所以,所以異面直線與所成角的余弦值為.故選:B10、C【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】從第1次著地到第2次著地經(jīng)過(guò)的路程為,第2次著地到第3次著地經(jīng)過(guò)的路程為,組成以為首項(xiàng),公比為的等比數(shù)列,所以第1次著地到第8次著地經(jīng)過(guò)的路程為,所以經(jīng)過(guò)的總路程是.故答案為:C.11、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因?yàn)?,所以,所以切線的斜率為.故選:D.12、A【解析】由題知為弦AB的中點(diǎn),可得直線與過(guò)圓心和點(diǎn)的直線垂直,可求的斜率,然后用點(diǎn)斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時(shí),,為最小值,外接球表面積最小值為.故答案為:.14、【解析】求得二次函數(shù)的單調(diào)增區(qū)間,即可求得參數(shù)的值.【詳解】因?yàn)槎魏瘮?shù)開(kāi)口向上,對(duì)稱軸為,故其單調(diào)增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.15、2【解析】用已知直線方程和圓方程聯(lián)立,可以求出交點(diǎn),再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標(biāo)為(0,-1),半徑r=2;聯(lián)立方程得交點(diǎn),如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.16、17【解析】根據(jù)雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:17三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質(zhì)即可證明;(2)、建立空間直角坐標(biāo)系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進(jìn)而求出求二面角的正切值.【小問(wèn)1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問(wèn)2詳解】由(1)知:平面,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,平面的法向量為,則與,即與,..,觀察可知二面角為鈍二面角,二面角的正切值為.18、(1)證明見(jiàn)解析;(2);(3)存在,點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設(shè)存在點(diǎn),設(shè),其中,利用空間向量法可得出關(guān)于的方程,結(jié)合的取值范圍可求得的值,即可得出結(jié)論.【小問(wèn)1詳解】證明:,,為的中點(diǎn),則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問(wèn)2詳解】解:,為的中點(diǎn),.平面平面,且平面平面,平面,平面.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問(wèn)3詳解】解:假設(shè)存在點(diǎn),設(shè),其中,所以,,且,設(shè)平面法向量為,所以,令,可得,由(2)知平面的一個(gè)法向量為,二面角為,則,整理可得,因,解得.故存在點(diǎn),且點(diǎn)在線段上位于靠近點(diǎn)的四等分點(diǎn)處.19、(1),(2)證明見(jiàn)解析【解析】(1)由弧長(zhǎng)公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問(wèn)1詳解】由弧長(zhǎng)公式得,于是,【小問(wèn)2詳解】cos,顯然在上單調(diào)遞增,于是.20、(1)(2)【解析】(1)由等比數(shù)列的通項(xiàng)公式計(jì)算基本量從而得出的通項(xiàng)公式;(2)由(1)可得,再由裂項(xiàng)相消法求和即可.【小問(wèn)1詳解】設(shè)等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因?yàn)閿?shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項(xiàng)公式為;【小問(wèn)2詳解】∵,∴,∴21、(1);(2)或.【解析】(1)將圓的方程表示為標(biāo)準(zhǔn)方程,確定圓心坐標(biāo)與半徑,利用圓心到直線的距離可求得實(shí)數(shù)的值;(2)求出圓心到直線的距離,利用、、三者滿足勾股定理可求得的方程,解出的值,即可得出直線的方程.【詳解】將圓C的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為,半徑為.(1)若直線與圓相切,則有,解得;(2)圓心到直線的距離為,由勾股定理可得,可得,整理得,解得或,故所求直線方程為或.【點(diǎn)睛】方法點(diǎn)睛:圓的弦長(zhǎng)的常用求法(1)幾何法:求圓的半徑為,弦心距為,弦長(zhǎng)為,則;(2)代數(shù)方法:運(yùn)用根與系數(shù)的關(guān)系及弦長(zhǎng)公式.22、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,建立如圖所示空間直角坐標(biāo)系,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論