浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第1頁
浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第2頁
浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第3頁
浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第4頁
浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省富陽市第二中學2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.三等分角是“古希臘三大幾何問題”之一,數(shù)學家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.2.為了調查全國人口的壽命,抽查了11個?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量3.在等差數(shù)列中,,且構成等比數(shù)列,則公差等于()A.0 B.3C. D.0或34.過兩點、的直線的傾斜角為,則的值為()A.或 B.C. D.5.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個6.在等比數(shù)列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或7.命題“,”否定是()A., B.,C., D.,8.已知向量,,則等于()A. B.C. D.9.下列函數(shù)是偶函數(shù)且在上是減函數(shù)的是A. B.C. D.10.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.11.若,,則有()A. B.C. D.12.設、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.若在上是減函數(shù),則實數(shù)a的取值范圍是_________.14.若向量,且夾角的余弦值為________15.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.16.若函數(shù)在區(qū)間上的最大值是,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標原點(1)求拋物線的方程;(2)求的面積.18.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.19.(12分)已知定點,動點滿足,設點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.20.(12分)已知圓C的圓心在坐標原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;21.(12分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍22.(10分)已知兩條直線,.設為實數(shù),分別根據(jù)下列條件求的值.(1);(2)直線在軸、軸上截距之和等于.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題設寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設的方程為,所以,即設AB的中點為,則由.所以,即圓的半徑為2故選:C2、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.3、D【解析】根據(jù),且構成等比數(shù)列,利用“”求解.【詳解】設等差數(shù)列的公差為d,因為,且構成等比數(shù)列,所以,解得,故選:D4、D【解析】利用斜率公式可得出關于實數(shù)的等式與不等式,由此可解得實數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.5、B【解析】構造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉,轉一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個,故選:B.6、B【解析】由韋達定理得a3a15=2,由等比數(shù)列通項公式性質得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數(shù)列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數(shù)列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用7、D【解析】根據(jù)含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.8、C【解析】根據(jù)題意,結合空間向量的坐標運算,即可求解.【詳解】由,,得,因此.故選:C.9、C【解析】根據(jù)題意,依次分析選項中函數(shù)的奇偶性與單調性,綜合即可得答案【詳解】根據(jù)題意,依次分析選項:對于A,為一次函數(shù),不是偶函數(shù),不符合題意;對于B,,,為奇函數(shù),不是偶函數(shù),不符合題意;對于C,,為二次函數(shù),是偶函數(shù)且在上是減函數(shù),符合題意;對于D,,,為奇函數(shù),不是偶函數(shù),不符合題意;故選C【點睛】本題考查函數(shù)的奇偶性與單調性的判定,關鍵是掌握常見函數(shù)的奇偶性與單調性,屬于基礎題10、D【解析】設,則,.所以當時,的最小值為.故選D.11、D【解析】對待比較的代數(shù)式進行作差,利用不等式基本性質,即可判斷大小.【詳解】因為,又,,故,則,即;因為,又,,故,則;綜上所述:.故選:D.12、C【解析】利用原命題與逆否命題之間的關系可得結論.【詳解】由原命題與逆否命題之間的關系可知,命題“若,則”的逆否命題是“若,則”.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導數(shù)的性質,結合常變量分離法進行求解即可.【詳解】,因為在上是減函數(shù),所以在上恒成立,即,當時,的最小值為,所以,故答案為:14、【解析】根據(jù)求解即可.【詳解】,故答案為:【點睛】本題主要考查了求空間中兩個向量的夾角,屬于基礎題.15、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.16、0【解析】由函數(shù),又由,則,根據(jù)二次函數(shù)的性質,即可求解函數(shù)的最大值,得到答案.【詳解】由函數(shù),因為,所以,當時,則,所以.【點睛】本題主要考查了余弦函數(shù)的性質,以及二次函數(shù)的圖象與性質,其中解答中根據(jù)余弦函數(shù),轉化為關于的二次函數(shù),利用二次函數(shù)的圖象與性質是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可設拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可求出△AOB的面積【詳解】(1)拋物線C的頂點在原點,焦點在x軸上,且過一點P(2,m),可設拋物線的方程為y2=2px(p>0),P(2,m)到焦點的距離為3,即有P到準線的距離為6,即23,解得p=2,即拋物線的標準方程為y2=4x;(2)聯(lián)立方程化簡,得x2﹣6x+1=0設交點為A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8點O到直線l的距離d,所以△AOB的面積為S|AB|?d82【點睛】本題考查拋物線的方程的求法及拋物線定義的應用,考查待定系數(shù)法的運用,考查求焦點弦AB與原點構成的△AOB面積,屬于中檔題18、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結果;(2)根據(jù)題意,將方程轉化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調遞減,在上單調遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即19、(1)(2)【解析】(1)設動點,根據(jù)條件列出方程,化簡求解即可;(2)設,求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設動點,則,,,又,∴,化簡得,即,∴動點的軌跡E的方程為.【小問2詳解】設,圓心到軌跡E上的點的距離∴當時,,∴.20、(1)(2)【解析】(1)由圓C的圓心在坐標原點,且過點,求得圓的半徑,利用圓的標準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標原點,且過點,所以圓C的半徑為,所以圓C的方程為.(2)由題意,圓心到直線l的距離為,所以P到直線的距離的最小值為.【點睛】本題主要考查了圓標準方程的求解,以及直線與圓的位置關系的應用,其中解答中熟練應用直線與圓的位置關系合理轉化是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.21、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關于、、的方程組,進而求出雙曲線的標準方程;(2)聯(lián)立直線和雙曲線的方程,得到關于的一元二次方程,利用直線和雙曲線的位置關系、根與系數(shù)的關系得到兩個交點坐標間的關系,利用A,B兩點都在以點為圓心的同一圓上得到,再利用向量的數(shù)量積為0得到、的關系,進而消去得到的不等式進行求解.【小問1詳解】解:因為過點作垂直于x軸的直線截雙曲線C所得弦長為,所以點在雙曲線上,由題意,得,解得,,,即雙曲線的標準方程為.【小問2詳解】解:聯(lián)立,得,因為直線與該雙曲線C交于不同的兩點,所以且,即且,設,,的中點,則,,因為A,B兩點都在以點為圓心的同一圓上,所以,即,因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論