版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西欽州市欽南區(qū)欽州港中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與空間向量共線(xiàn)的一個(gè)向量的坐標(biāo)是()A. B.C. D.2.已知直線(xiàn)為拋物線(xiàn)的準(zhǔn)線(xiàn),直線(xiàn)經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn),與拋物線(xiàn)交于點(diǎn),則的最小值為()A. B.C.4 D.83.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開(kāi)始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.4.已知數(shù)列的前項(xiàng)和為,當(dāng)時(shí),()A.11 B.20C.33 D.355.若數(shù)列滿(mǎn)足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.6.已知公差不為0的等差數(shù)列中,(m,),則mn的最大值為()A.6 B.12C.36 D.487.如圖,在四面體中,,,兩兩垂直,已知,,則直線(xiàn)與平面所成角的正弦值為()A. B.C. D.8.已知、為非零實(shí)數(shù),若且,則下列不等式成立的是()A. B.C. D.9.設(shè)命題,,則為().A., B.,C., D.,10.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對(duì)任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.如圖,在平行六面體中,底面是邊長(zhǎng)為的正方形,若,且,則的長(zhǎng)為()A. B.C. D.12.設(shè)等比數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,若,,則_____14.平面內(nèi)n條直線(xiàn)兩兩相交,且任意三條直線(xiàn)不過(guò)同一點(diǎn),將其交點(diǎn)個(gè)數(shù)記為,若規(guī)定,則,,_________,_________,(用含n的式子表示)15.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為_(kāi)_______.16.已知兩平行直線(xiàn)與間的距離為3,則C的值是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.18.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(diǎn)(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積20.(12分)已知圓M經(jīng)過(guò)原點(diǎn)和點(diǎn),且它的圓心M在直線(xiàn)上.(1)求圓M的方程;(2)若點(diǎn)D為圓M上的動(dòng)點(diǎn),定點(diǎn),求線(xiàn)段CD的中點(diǎn)P的軌跡方程.21.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線(xiàn)為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個(gè)幾何體的表面積;(2)設(shè)G是弧DF的中點(diǎn),設(shè)P是弧CE上的一點(diǎn),且.求異面直線(xiàn)AG與BP所成角的大小.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)空間向量共線(xiàn)的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.2、D【解析】先求拋物線(xiàn)的方程,再聯(lián)立直線(xiàn)方程和拋物線(xiàn)方程,由弦長(zhǎng)公式可求的最小值.【詳解】因?yàn)橹本€(xiàn)為拋物線(xiàn)的準(zhǔn)線(xiàn),故即,故拋物線(xiàn)方程為:.設(shè)直線(xiàn),則,,而,當(dāng)且僅當(dāng)?shù)忍?hào)成立,故的最小值為8,故選:D.3、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開(kāi)始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡(jiǎn)得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】4、B【解析】由數(shù)列的性質(zhì)可得,計(jì)算可得到答案.【詳解】由題意,.故答案為B.【點(diǎn)睛】本題考查了數(shù)列的前n項(xiàng)和的性質(zhì),屬于基礎(chǔ)題.5、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)?,所以?shù)列是等差數(shù)列,公差為1,所以.故選:B6、C【解析】由等差數(shù)列的性質(zhì)可得,再應(yīng)用基本不等式求mn的最大值,注意等號(hào)成立條件.【詳解】由題設(shè)及等差數(shù)列的性質(zhì)知:,又m,,所以,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.所以mn的最大值為.故選:C7、D【解析】利用三線(xiàn)垂直建立空間直角坐標(biāo)系,將線(xiàn)面角轉(zhuǎn)化為直線(xiàn)的方向向量和平面的法向量所成的角,再利用空間向量進(jìn)行求解.【詳解】以,,所在直線(xiàn)為軸,軸,軸建立空間直角坐標(biāo)系(如圖所示),則,,,,,設(shè)平面的一個(gè)法向量為,則,即,令,則,,所以平面的一個(gè)法向量為;設(shè)直線(xiàn)與平面所成角為,則,即直線(xiàn)與平面所成角的正弦值為.故選:D.8、D【解析】作差法即可逐項(xiàng)判斷.【詳解】或,對(duì)于A:,∵,無(wú)法判斷正負(fù),故A錯(cuò)誤;對(duì)于B:,∵無(wú)法判斷正負(fù),故B錯(cuò)誤;對(duì)于C:,∵,,∴,,故C錯(cuò)誤;對(duì)于D:,∴,故D正確.故選:D.9、B【解析】根據(jù)全稱(chēng)命題和特稱(chēng)命題互為否定,即可得到結(jié)果.【詳解】因?yàn)槊},,所以為,.故選:B.10、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因?yàn)楹瘮?shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對(duì)任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對(duì)任意的恒成立,即由“對(duì)任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對(duì)任意的,”,因此“對(duì)任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A11、D【解析】由向量線(xiàn)性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.12、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項(xiàng)和公式計(jì)算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列下標(biāo)和性質(zhì)計(jì)算可得;【詳解】解:∵在等比數(shù)列中,,∴原式故答案為:【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、①.6;②..【解析】利用第條直線(xiàn)與前條直線(xiàn)相交有個(gè)交點(diǎn)得出與的關(guān)系后可得結(jié)論【詳解】第4條直線(xiàn)與前三條直線(xiàn)有3個(gè)交點(diǎn),因此,同理,由此得到第條直線(xiàn)與前條直線(xiàn)相交有個(gè)交點(diǎn),所以,即所以故答案為:6;15、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)?,所以該組數(shù)據(jù)的方差為故答案為:.16、【解析】根據(jù)兩條平行直線(xiàn)之間的距離公式即可得解.【詳解】?jī)善叫兄本€(xiàn)與間的距離為3,所以,所以故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,又∵,∴,∴數(shù)列是首項(xiàng)為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;【小問(wèn)2詳解】由(1)知,則,∴,∴.18、(1)答案見(jiàn)解析;(2).【解析】(1)求出函數(shù)的定義域?yàn)?,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對(duì)實(shí)數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗(yàn)證是否成立,由此可得出實(shí)數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)椋?(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時(shí),令得.若,則;若,則.①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時(shí),單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時(shí),,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當(dāng)時(shí),由于,,,所以,存在,使得.當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,考查分類(lèi)討論思想的應(yīng)用,屬于難題.19、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)【解析】(1)由直線(xiàn)與平面垂直證明直線(xiàn)與平行的垂直;(2)證明直線(xiàn)與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因?yàn)锳B⊥BC,所以AB⊥平面,因?yàn)锳B平面,所以平面平面.(2)取AB中點(diǎn)G,連結(jié)EG,F(xiàn)G,因?yàn)镋,F(xiàn)分別是、的中點(diǎn),所以FG∥AC,且FG=AC,因?yàn)锳C∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因?yàn)镋G平面ABE,平面ABE,所以平面.(3)因?yàn)?AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點(diǎn):本小題主要考查直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識(shí),考查同學(xué)們的空間想象能力、推理論證能力、運(yùn)算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想20、(1).(2).【解析】(1)設(shè)圓M的方程為,由已知條件建立方程組,求解即可;(2)設(shè),,依題意得.代入圓M的方程可得點(diǎn)P的軌跡方程.【小問(wèn)1詳解】解:設(shè)圓M的方程為,則圓心依題意得,解得.所以圓M的方程為.【小問(wèn)2詳解】解:設(shè),,依題意得,得.點(diǎn)為圓M上的動(dòng)點(diǎn),得,化簡(jiǎn)得P的軌跡方程為.21、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個(gè)扇形、兩個(gè)矩形和一個(gè)圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過(guò)平移將異面直線(xiàn)轉(zhuǎn)化為同一個(gè)平面內(nèi)的直線(xiàn)夾角即可【小問(wèn)1詳解】上下兩個(gè)扇形的面積之和為:兩個(gè)矩形面積之和為:4側(cè)面圓弧段的面積為:故這個(gè)幾何體的表面積為:【小問(wèn)2詳解】如下圖,將直線(xiàn)平移到下底面上為由,且,,可得:面則而G是弧DF的中點(diǎn),則由于上下兩個(gè)平面平行且全等,則直線(xiàn)與直線(xiàn)的夾角等于直線(xiàn)與直線(xiàn)的夾角,即為所求,則
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人設(shè)計(jì)合同
- 私教協(xié)議合同
- 北京衛(wèi)生職業(yè)學(xué)院《無(wú)線(xiàn)網(wǎng)絡(luò)》2023-2024學(xué)年第一學(xué)期期末試卷
- 人員外包合同
- 二零二五年國(guó)際物流行業(yè)合作與戰(zhàn)略聯(lián)盟合同
- 空調(diào)護(hù)欄合同
- 公司與勞務(wù)派遣公司合同范本
- 摘果機(jī)課程設(shè)計(jì)
- 2025年度按摩技師跨區(qū)域工作派遣與協(xié)作合同3篇
- 二零二五年度XX項(xiàng)目清算轉(zhuǎn)讓居間合同2篇
- 六年級(jí)語(yǔ)文上冊(cè)期末試卷及完整答案
- 北京市東城區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末生物試題
- ISO28000:2022供應(yīng)鏈安全管理體系
- 人教版六年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)分層作業(yè)設(shè)計(jì)含答案
- 2022年新媒體編輯實(shí)戰(zhàn)教程試題帶答案(題庫(kù))
- 在一日活動(dòng)中培養(yǎng)幼兒親社會(huì)行為的實(shí)踐研究報(bào)告
- 【課文翻譯】新人教必修三 Unit 1-Unit5 課文翻譯(英漢對(duì)照)
- 高三數(shù)學(xué)集體備課記錄《函數(shù)的單調(diào)性與最值》
- 起重機(jī)設(shè)計(jì)手冊(cè)
- 閉水試驗(yàn)自動(dòng)計(jì)算公式及說(shuō)明
- “挑戰(zhàn)杯”優(yōu)秀組織獎(jiǎng)申報(bào)材料
評(píng)論
0/150
提交評(píng)論