版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省濱州市鄒平縣黃山中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),若為奇函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.2.已知實(shí)數(shù),滿足,則的最小值是()A. B.C. D.3.已知函數(shù)的值域?yàn)?,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.等差數(shù)列中,,,則()A.6 B.7C.8 D.95.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.6.若在1和16中間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,則公比為()A. B.2C. D.47.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長(zhǎng)為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.8.已知A,B,C三點(diǎn)不共線,O是平面ABC外一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A,B,C一定共面的是A. B.C. D.9.等比數(shù)列的各項(xiàng)均為正數(shù),且,則=()A.8 B.16C.32 D.6410.已知A(3,2),點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上移動(dòng),為使取得最小值,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(2,2)C. D.11.已知梯形中,,且,則的值為()A. B.C. D.12.已知實(shí)數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為___________.14.過(guò)點(diǎn),且周長(zhǎng)最小的圓的標(biāo)準(zhǔn)方程為______15.已知拋物線:,斜率為且過(guò)點(diǎn)的直線與交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn)(1)求拋物線的方程;(2)設(shè)點(diǎn),記直線,的斜率分別為,,證明:為定值16.以正方體的對(duì)角線的交點(diǎn)為坐標(biāo)原點(diǎn)O建立右手系的空間直角坐標(biāo)系,其中,,,則點(diǎn)的坐標(biāo)為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)籃天技校為了了解車床班學(xué)生的操作能力,設(shè)計(jì)了一個(gè)考查方案;每個(gè)考生從道備選題中一次性隨機(jī)抽取道題,按照題目要求獨(dú)立完成零件加工,規(guī)定:至少正確加工完成其中個(gè)零件方可通過(guò).道備選題中,考生甲有個(gè)零件能正確加工完成,個(gè)零件不能完成;考生乙每個(gè)零件正確完成的概率都是,且每個(gè)零件正確加工完成與否互不影響(1)分別求甲、乙兩位考生正確加工完成零件數(shù)的概率分布列(列出分布列表);(2)試從甲、乙兩位考生正確加工完成零件數(shù)的數(shù)學(xué)期望及兩人通過(guò)考查的概率分析比較兩位考生的操作能力18.(12分)如圖,四棱錐中,底面為正方形,底面,,點(diǎn),,分別為,,的中點(diǎn),平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值19.(12分)已知在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和20.(12分)橢圓的一個(gè)頂點(diǎn)為,離心率(1)求橢圓方程;(2)若直線與橢圓交于不同的兩點(diǎn).若滿足,求直線的方程21.(12分)已知為數(shù)列的前項(xiàng)和,且.(1)求的通項(xiàng)公式;(2)若,求的前項(xiàng)和.22.(10分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過(guò)點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式即可求出結(jié)果【詳解】函數(shù)的定義域?yàn)?,若為奇函?shù),則則,即,所以,所以函數(shù),可得;所以曲線在點(diǎn)處的切線的斜率為,則曲線在點(diǎn)處的切線方程為,即故選:C2、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A3、D【解析】求出函數(shù)在時(shí)值的集合,函數(shù)在時(shí)值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)時(shí),在上單調(diào)遞增,,,則在上值的集合是,當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域?yàn)?,于是得,則,解得,所以實(shí)數(shù)的取值范圍是.故選:D4、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C5、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D6、A【解析】根據(jù)等比數(shù)列的通項(xiàng)得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項(xiàng)得:,,故選:A.7、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.8、D【解析】首先利用坐標(biāo)法,排除錯(cuò)誤選項(xiàng),然后對(duì)符合的選項(xiàng)驗(yàn)證存在使得,由此得出正確選項(xiàng).【詳解】不妨設(shè).對(duì)于A選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),,由于的豎坐標(biāo)為,故在平面上,也即四點(diǎn)共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點(diǎn)共面.故選:D.【點(diǎn)睛】本小題主要考查空間四點(diǎn)共面的證明方法,考查空間向量的線性運(yùn)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、B【解析】由等比數(shù)列的下標(biāo)和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.10、B【解析】設(shè)點(diǎn)P到準(zhǔn)線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點(diǎn)到直線的距離最短求出【詳解】如圖所示:設(shè)點(diǎn)P到準(zhǔn)線的距離為,準(zhǔn)線方程為,所以,當(dāng)且僅當(dāng)點(diǎn)為與拋物線的交點(diǎn)時(shí),取得最小值,此時(shí)點(diǎn)P的坐標(biāo)為故選:B11、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)椋杂?,所?故選:D.12、D【解析】先畫出可行域,由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,求出點(diǎn)A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,由,得,即,所以的最大值為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】畫出不等式組對(duì)應(yīng)的可行域,平移動(dòng)直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對(duì)應(yīng)的可行域如圖所示:將初始直線平移至點(diǎn)時(shí),可取最小值,由可得,故,故答案為:2.14、【解析】方法一:根據(jù)當(dāng)線段為圓的直徑時(shí),圓周長(zhǎng)最小,由線段的中點(diǎn)為圓心,其長(zhǎng)一半為半徑求解;方法二:根據(jù)當(dāng)線段為圓的直徑時(shí),圓周長(zhǎng)最小,根據(jù)以AB為直徑的圓的方程求解.【詳解】方法一:當(dāng)線段為圓的直徑時(shí),過(guò)點(diǎn),的圓的半徑最小,從而周長(zhǎng)最小,即圓心為線段的中點(diǎn),半徑則所求圓的標(biāo)準(zhǔn)方程為方法二:當(dāng)線段為圓的直徑時(shí),過(guò)點(diǎn),的圓的半徑最小,從而周長(zhǎng)最小又,,故所求圓的方程為,整理得,所以所求圓的標(biāo)準(zhǔn)方程為15、(1)(2)為定值6【解析】(1)由題意可知:將直線方程代入拋物線方程,由韋達(dá)定理可知:,,,,求得p的值,即可求得拋物線E的方程;(2)由直線的斜率公式可知:,,,代入,,即可得到:.試題解析:(1)直線的方程為,聯(lián)立方程組得,設(shè),,所以,,又,所以,從而拋物線的方程為(2)因?yàn)?,,所以,,因此,又,,所以,即為定值點(diǎn)睛:定點(diǎn)、定值問(wèn)題通常是通過(guò)設(shè)參數(shù)或取特殊值來(lái)確定“定點(diǎn)”是什么、“定值”是多少,或者將該問(wèn)題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問(wèn)題,證明該式是恒定的.定點(diǎn)、定值問(wèn)題同證明問(wèn)題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).16、【解析】根據(jù)已知點(diǎn)的坐標(biāo),確定出坐標(biāo)系即可得【詳解】如圖,由已知得坐標(biāo)系如圖所示,軸過(guò)正方形的對(duì)角線交點(diǎn),軸過(guò)中點(diǎn),軸過(guò)中點(diǎn),因此可知坐標(biāo)為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)分布列見解析(2)甲的試驗(yàn)操作能力較強(qiáng),理由見解析【解析】(1)設(shè)考生甲、乙正確加工完成零件的個(gè)數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,計(jì)算出兩個(gè)隨機(jī)變量在不同取值下的概率,可得出這兩個(gè)隨機(jī)變量的概率分布列;(2)計(jì)算出、、、的值,比較、的大小,以及、的大小,由此可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)考生甲、乙正確加工完成零件的個(gè)數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正確加工完成零件數(shù)的概率分布列如下表所示:,,,,所以,考生乙正確加工完成零件數(shù)的概率分布列如下表所示:【小問(wèn)2詳解】解:,,,,所以,,從做對(duì)題的數(shù)學(xué)期望分析,兩人水平相當(dāng);從通過(guò)考查的概率分析,甲通過(guò)的可能性大,因此可以判斷甲的試驗(yàn)操作能力較強(qiáng).18、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點(diǎn),所在直線分別為的正方向建立空間直角坐標(biāo)系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問(wèn)1詳解】.證明如下:在△中,因?yàn)辄c(diǎn)分別為的中點(diǎn),所以//.又平面,平面,所以//平面.因?yàn)槠矫?,平面平面,所?/所以//.在△中,因?yàn)辄c(diǎn)為的中點(diǎn),所以點(diǎn)為的中點(diǎn),即.【小問(wèn)2詳解】因?yàn)榈酌鏋檎叫?,所?因?yàn)榈酌?,所以?如圖,建立空間直角坐標(biāo)系,則,,,因?yàn)榉謩e為的中點(diǎn),所以.所以,.設(shè)平面的法向量,則即令,于.又因?yàn)槠矫娴姆ㄏ蛄繛?,所以所以平面與平面夾角的余弦值為.19、(1)(2)【解析】(1)設(shè)的公差為,由等差數(shù)列的通項(xiàng)公式結(jié)合條件可得答案.(2)由(1)可得,由錯(cuò)位相減法可得答案.【小問(wèn)1詳解】設(shè)的公差為,由已知得且,解得,,所以的通項(xiàng)公式為【小問(wèn)2詳解】由(1)可得,所以,所以,兩式相減得:,所以,所以20、(1);(2)【解析】(1)首先由橢圓的一個(gè)頂點(diǎn)可以求出的值,再根據(jù)離心率可得到、的關(guān)系,聯(lián)立即可求得的值,進(jìn)而得到橢圓的方程;(2)先聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理得到線段的中點(diǎn)的坐標(biāo),再根據(jù),即可求得的值,進(jìn)而求得直線的方程【詳解】(1)由一個(gè)頂點(diǎn)為,離心率,可得,,,解得,,即有橢圓方程為(2)由知點(diǎn)在線段的垂直平分線上,由,消去得,由,得方程的,即方程有兩個(gè)不相等的實(shí)數(shù)根設(shè)、,線段的中點(diǎn),則,所以,所以,即,因?yàn)?,所以直線的斜率為,由,得,所以,解得:,即有直線的方程為21、(1)(2)【解析】(1)由與的關(guān)系結(jié)合等比數(shù)列的定義得出的通項(xiàng)公式;(2)由(1)得出,再由錯(cuò)位相減法得出的前項(xiàng)和.【小問(wèn)1詳解】因?yàn)?,所以?dāng)時(shí),,所以.當(dāng)時(shí),,兩式相減,得,所以,所以,所以是以1為首項(xiàng),2為公比的等比數(shù)列,所以.【小問(wèn)2詳解】由(1)得,所以,兩邊同乘以,得,兩式相減,得,所以.22、(1)(2)或【解析】(1)設(shè)曲線上的任意一點(diǎn),由題意可得,化簡(jiǎn)即可得出(2)分直線的斜率不存在與存在兩種情況
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房子委托租協(xié)議
- 2024年度地毯材料進(jìn)出口貿(mào)易合同3篇
- 2024年月明玉12FMB10718PM大數(shù)據(jù)中心建設(shè)與運(yùn)營(yíng)合同3篇
- 高考能力測(cè)試步步高語(yǔ)文基礎(chǔ)訓(xùn)練擴(kuò)展語(yǔ)句
- 放牛班的春天觀后感范文
- 小型冷庫(kù)課程設(shè)計(jì)軸面圖
- 榨菜廢水的治理課程設(shè)計(jì)
- 2024年度金融機(jī)構(gòu)債券發(fā)行合同模板3篇
- 2025年山東淄博新世紀(jì)規(guī)劃事務(wù)所限公司招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東淄博市博山區(qū)公開招聘教師101人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 瀝青路面彎沉溫度修正
- 軟裝公司商業(yè)計(jì)劃書
- 湖北省武漢市硚口區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 重慶市墊江區(qū)2023-2024學(xué)年部編版七年級(jí)上學(xué)期期末歷史試卷
- 云南省昆明市呈貢區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試卷+
- 云南省昭通市巧家縣2023-2024學(xué)年五年級(jí)上學(xué)期期末考試語(yǔ)文試卷
- 有趣的英語(yǔ)小知識(shí)講座
- 2024年擬攻讀博士學(xué)位期間研究計(jì)劃
- 國(guó)際知名高科技園區(qū)發(fā)展及對(duì)我國(guó)的經(jīng)驗(yàn)借鑒
- 財(cái)政投資評(píng)審項(xiàng)目造價(jià)咨詢服務(wù)方案審計(jì)技術(shù)方案
- 單位就業(yè)人員登記表
評(píng)論
0/150
提交評(píng)論