版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林省長(zhǎng)春汽車(chē)經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)六中高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是()A. B.C. D.2.已知橢圓C:的兩個(gè)焦點(diǎn)分別為,,橢圓C上有一點(diǎn)P,則的周長(zhǎng)為()A.8 B.10C. D.123.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.144.某四面體的三視圖如圖所示,該四面體的體積為()A. B.C. D.5.過(guò)原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.6.已知雙曲線C:-=1(a>b>0)的左焦點(diǎn)為F1,若過(guò)原點(diǎn)傾斜角為的直線與雙曲線C左右兩支交于M、N兩點(diǎn),且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.7.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.8.已知,,若,則實(shí)數(shù)的值為()A. B.C. D.9.已知,若,則()A. B.2C. D.e10.若直線與圓相切,則()A. B.或2C. D.或11.下列雙曲線中,漸近線方程為的是A. B.C. D.12.我們知道∶用平行于圓錐母線的平面(不過(guò)頂點(diǎn))截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),已知過(guò)CD與E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的圓錐曲線的一部分,則該圓錐曲線的焦點(diǎn)到其準(zhǔn)線的距離等于()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體,點(diǎn)在底面內(nèi)運(yùn)動(dòng),且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為_(kāi)_____.14.已知雙曲線:,,是其左右焦點(diǎn).圓:,點(diǎn)為雙曲線右支上的動(dòng)點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),則的最小值是________.15.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_(kāi)______.16.若,是雙曲線與橢圓的共同焦點(diǎn),點(diǎn)P是兩曲線的一個(gè)交點(diǎn),且為等腰三角形,則該雙曲線的漸近線為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)是拋物線C:上的點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且,直線l:與拋物線C相交于不同的兩點(diǎn)A,B.(1)求拋物線C的方程;(2)若,求k的值.18.(12分)已知函數(shù),且在處取得極值.(1)求的值;(2)當(dāng),求的最小值.19.(12分)在①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解答問(wèn)題在中,內(nèi)角A,,的對(duì)邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分20.(12分)某地從今年8月份開(kāi)始啟動(dòng)12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計(jì)接種人數(shù)統(tǒng)計(jì)如下表:前x周1234累計(jì)接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預(yù)計(jì)該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,21.(12分)已知圓(1)若一直線被圓C所截得的弦的中點(diǎn)為,求該直線的方程;(2)設(shè)直線與圓C交于A,B兩點(diǎn),把的面積S表示為m的函數(shù),并求S的最大值22.(10分)已知圓D經(jīng)過(guò)點(diǎn)A(-1,0),B(3,0),C(1,2).(1)求圓D的標(biāo)準(zhǔn)方程;(2)若直線l:與圓D交于M、N兩點(diǎn),求線段MN的長(zhǎng)度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】函數(shù)既有極大值又有極小值轉(zhuǎn)化為導(dǎo)函數(shù)在定義域上有兩個(gè)不同的零點(diǎn).【詳解】因?yàn)榧扔袠O大值又有極小值,且,所以有兩個(gè)不等的正實(shí)數(shù)解,所以,且,解得,且.故選:B.2、B【解析】根據(jù)橢圓的定義可得:,所以的周長(zhǎng)等于【詳解】因?yàn)?,,所以,故的周長(zhǎng)為故選:B3、B【解析】利用等比數(shù)列的基本量進(jìn)行計(jì)算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B4、A【解析】可由三視圖還原原幾何體,然后根據(jù)題意的邊角關(guān)系,完成體積的求解.【詳解】由三視圖還原原幾何體如圖:其中平面,,則該四面體的體積為.故選:A.5、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A6、C【解析】根據(jù)雙曲線和直線的對(duì)稱(chēng)性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進(jìn)行求解即可.【詳解】設(shè)雙曲線的右焦點(diǎn)為F2,過(guò)原點(diǎn)傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對(duì)稱(chēng)性可知:M、N兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因?yàn)椋?,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.7、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B8、A【解析】由,得,從而可得答案.【詳解】解:因?yàn)?,所以,即,解?故選:A.9、B【解析】求得導(dǎo)函數(shù),則,計(jì)算即可得出結(jié)果.【詳解】,.,解得:.故選:B10、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因?yàn)橹本€與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.11、A【解析】由雙曲線的漸進(jìn)線的公式可行選項(xiàng)A的漸進(jìn)線方程為,故選A.考點(diǎn):本題主要考查雙曲線的漸近線公式.12、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可得C的坐標(biāo),設(shè)拋物線的方程,將C的坐標(biāo)代入求出拋物線的方程,進(jìn)而可得焦點(diǎn)到其準(zhǔn)線的距離【詳解】設(shè)AB,CD的交點(diǎn)為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因?yàn)镋是母線PB的中點(diǎn),所以,由題意建立適當(dāng)?shù)淖鴺?biāo)系,以BP為y軸以O(shè)E為x軸,E為坐標(biāo)原點(diǎn),如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點(diǎn)坐標(biāo)代入可得,所以,所以拋物線的方程為∶,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,所以焦點(diǎn)到其準(zhǔn)線的距離為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】畫(huà)出立體圖形,因?yàn)槊婷?在底面內(nèi)運(yùn)動(dòng),且始終保持平面,可得點(diǎn)在線段上運(yùn)動(dòng),因?yàn)槊婷?直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運(yùn)動(dòng),且始終保持平面可得點(diǎn)在線段上運(yùn)動(dòng),面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長(zhǎng)是定值,當(dāng)最短時(shí),,即最大,即角最大設(shè)正方體的邊長(zhǎng)為,故故答案為:【點(diǎn)睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動(dòng)點(diǎn)問(wèn)題時(shí),應(yīng)畫(huà)出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計(jì)算能力,屬于難題.14、##【解析】利用雙曲線定義,將的最小值問(wèn)題轉(zhuǎn)化為的最小值問(wèn)題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點(diǎn)為雙曲線右支上的動(dòng)點(diǎn)知∴∴.故答案為:15、12【解析】根據(jù)題意,先通過(guò)原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進(jìn)而求出新數(shù)據(jù)的方差.【詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.16、【解析】根據(jù)給定條件求出兩曲線的共同焦點(diǎn),再由橢圓、雙曲線定義求出a,b即可計(jì)算作答.【詳解】橢圓的焦點(diǎn),由橢圓、雙曲線的對(duì)稱(chēng)性不妨令點(diǎn)P在第一象限,因?yàn)榈妊切?,由橢圓的定義知:,則,,由雙曲線定義知:,即,,,所以雙曲線的漸近線為:.故答案為:【點(diǎn)睛】易錯(cuò)點(diǎn)睛:雙曲線(a>0,b>0)漸近線方程為,而雙曲線(a>0,b>0)的漸近線方程為(即),應(yīng)注意其區(qū)別與聯(lián)系.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過(guò)拋物線焦點(diǎn)的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長(zhǎng)AB【詳解】(1)拋物線C:的準(zhǔn)線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過(guò)拋物線C的焦點(diǎn)F,∴解得:,所以k的值為1或.【點(diǎn)睛】考核拋物線的定義及過(guò)焦點(diǎn)弦的求法18、(1);(2).【解析】(1)對(duì)函數(shù)求導(dǎo),則極值點(diǎn)為導(dǎo)函數(shù)的零點(diǎn),進(jìn)而建立方程組解出a,b,然后討論函數(shù)的單調(diào)區(qū)間進(jìn)行驗(yàn)證,最后確定答案;(2)根據(jù)(1)得到函數(shù)在上的單調(diào)區(qū)間,進(jìn)而求出最小值.【小問(wèn)1詳解】,因?yàn)樵谔幦〉脴O值,所以,則,所以時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,時(shí),,單調(diào)遞減,故為函數(shù)的極值點(diǎn).于是.【小問(wèn)2詳解】結(jié)合(1)可知,在上單調(diào)遞減,在上單調(diào)遞增,在單調(diào)遞減,而,所以.因?yàn)?,所?綜上:的最小值為.19、選擇見(jiàn)解析;(1);(2)【解析】(1)選條件①.利用正弦定理邊角互化,結(jié)合兩角和的正弦公式可得,從而可得答案;選條件②.邊角互化、切化弦,結(jié)合兩角和的正弦公式可得,從而得答案;選條件③.邊角互化,利用余弦定理可得,從而可得答案;(2)由三角形面積公式可得得,再利用余弦定理與基本不等式可得答案.【詳解】(1)方案一:選條件①由可得,由正弦定理得,因?yàn)椋?,所以,故,又,于是,即,因?yàn)椋苑桨付哼x條件②因?yàn)?,所以由正弦定理及同角三角函?shù)的基本關(guān)系式,得,即,因?yàn)?,所以,又,所以,因?yàn)?,所以方案三:選條件③∵,∴,即,∴,∴又,所以(2)由題意知,得由余弦定理得,當(dāng)且僅當(dāng)且,即,時(shí)取等號(hào),所以的最小值為20、(1);(2)預(yù)計(jì)第9周才能完成接種工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小問(wèn)1詳解】解:由表中數(shù)據(jù)得,,,,.所以所以y關(guān)于的線性回歸方程為.【小問(wèn)2詳解】解:令,解得.所以預(yù)計(jì)第9周才能完成接種工作.21、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長(zhǎng)與d的關(guān)系,利用基本不等式求出的面積S的最大值【小問(wèn)1詳解】圓化為標(biāo)準(zhǔn)方程為:.則.設(shè)所求的直線為m.由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房子委托租協(xié)議
- 2024年度地毯材料進(jìn)出口貿(mào)易合同3篇
- 2024年月明玉12FMB10718PM大數(shù)據(jù)中心建設(shè)與運(yùn)營(yíng)合同3篇
- 小型冷庫(kù)課程設(shè)計(jì)軸面圖
- 榨菜廢水的治理課程設(shè)計(jì)
- 2024年度金融機(jī)構(gòu)債券發(fā)行合同模板3篇
- 2025年山東淄博新世紀(jì)規(guī)劃事務(wù)所限公司招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東淄博市博山區(qū)公開(kāi)招聘教師101人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟(jì)寧鄒城市衛(wèi)生類(lèi)事業(yè)單位招聘工作人員(含備案制)124人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟(jì)寧市屬事業(yè)單位招聘69人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2024-2025學(xué)年 數(shù)學(xué)二年級(jí)上冊(cè)冀教版期末測(cè)試卷(含答案)
- 《光伏電站運(yùn)行與維護(hù)》試題及答案一
- 軍事理論(2024年版)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 國(guó)開(kāi)2024年秋《生產(chǎn)與運(yùn)作管理》形成性考核1-4答案
- 新媒體與社會(huì)性別智慧樹(shù)知到期末考試答案章節(jié)答案2024年復(fù)旦大學(xué)
- 《干眼》ppt課件
- 國(guó)家開(kāi)放大學(xué)《建筑力學(xué)》形成性作業(yè)1-4參考答案
- 臺(tái)式電腦采購(gòu)評(píng)分標(biāo)準(zhǔn)
- 悠悠球的理論力學(xué)分析
- 國(guó)民經(jīng)濟(jì)行業(yè)與分類(lèi)代碼
- 高壓擺噴防滲墻施工方案(共10頁(yè))
評(píng)論
0/150
提交評(píng)論