版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省鄭州市高新區(qū)一中2025屆高一數(shù)學第一學期期末經典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為鈍角,且,則()A. B.C. D.2.將函數(shù)y=cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是()A. B.C. D.3.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度4.“”是“”的()條件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要5.設為所在平面內一點,若,則下列關系中正確的是A. B.C. D.6.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.下列命題正確的是()A.若,則B.若,則C.若,則D.若,則8.命題“,有”的否定是()A.,使 B.,有C.,使 D.,使9.的外接圓的圓心為O,半徑為1,若,且,則的面積為()A. B.C. D.110.已知定義在R上的函數(shù)是奇函數(shù)且滿足,,數(shù)列滿足,且,(其中為的前n項和).則A.3 B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.用表示函數(shù)在閉區(qū)間上的最大值.若正數(shù)滿足,則的最大值為__________12.函數(shù)的值域為_____________13.設是定義在上的函數(shù),若存在兩個不等實數(shù),使得,則稱函數(shù)具有性質,那么下列函數(shù):①;②;③;具有性質的函數(shù)的個數(shù)為____________14.已知的圖象的對稱軸為_________________15.設函數(shù),若不存在,使得與同時成立,則實數(shù)a的取值范圍是________.16.若f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=,若方程f(x)=kx恰有3個不同的根,則實數(shù)k的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且(1)求f(x)的解析式;(2)判斷f(x)在區(qū)間(0,1)上的單調性,并用定義法證明18.已知函數(shù)(1)若為偶函數(shù),求;(2)若命題“,”為假命題,求實數(shù)的取值范圍19.已知集合,.(1)當時,求;(2)若,求實數(shù)的取值范圍.20.已知函數(shù),且.(1)求的解析式,判斷并證明它的奇偶性;(2)求證:函數(shù)在上單調減函數(shù).21.對于函數(shù),若在定義域內存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先求出,再利用和角的余弦公式計算求解.【詳解】∵為鈍角,且,∴,∴故選:C【點睛】本題主要考查同角的平方關系,考查和角的余弦公式的應用,意在考查學生對這些知識的理解掌握水平.2、A【解析】由題意結合輔助角公式可得,進而可得g(x)=2sin,由三角函數(shù)的性質可得,化簡即可得解.【詳解】設f(x)=cosx+sinx=2sin,向左平移m個單位長度得g(x)=2sin,∵g(x)的圖象關于y軸對稱,∴,∴m=,由m>0可得m的最小值為.故選:A.【點睛】本題考查了輔助角公式及三角函數(shù)圖象與性質的應用,考查了運算求解能力,屬于基礎題.3、B【解析】根據(jù)誘導公式將函數(shù)變?yōu)檎液瘮?shù),再減去得到.【詳解】函數(shù)又故將函數(shù)圖像上的點向右平移個單位得到故答案為:B.【點睛】本題考查的是三角函數(shù)的平移問題,首先保證三角函數(shù)同名,不是同名通過誘導公式化為同名,在平移中符合左加右減的原則,在寫解析式時保證要將x的系數(shù)提出來,針對x本身進行加減和伸縮.4、B【解析】根據(jù)充分條件和必要條件的概念,結合題意,即可得到結果.【詳解】因為,所以“”是“”的必要不充分條件.故選:B.5、A【解析】∵∴?=3(?);∴=?.故選A.6、D【解析】根據(jù)同角三角函數(shù)關系式,化簡,結合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【詳解】根據(jù)同角三角函數(shù)關系式而所以故的終邊在第四象限故選:D【點睛】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎題.7、D【解析】由不等式性質依次判斷各個選項即可.【詳解】對于A,若,由可得:,A錯誤;對于B,若,則,此時未必成立,B錯誤;對于C,當時,,C錯誤;對于D,當時,由不等式性質知:,D正確.故選:D.8、D【解析】全稱命題的否定:將任意改存在并否定原結論,即可知正確選項.【詳解】由全稱命題的否定為特稱命題,∴原命題的否定為.故選:D9、B【解析】由,利用向量加法的幾何意義得出△ABC是以A為直角的直角三角形,又|,從而可求|AC|,|AB|的值,利用三角形面積公式即可得解【詳解】由于,由向量加法的幾何意義,O為邊BC中點,∵△ABC的外接圓的圓心為O,半徑為1,∴三角形應該是以BC邊為斜邊的直角三角形,∠BAC=,斜邊BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故選B.【點睛】本題主要考查了平面向量及應用,三角形面積的求法,屬于基礎題10、A【解析】由奇函數(shù)滿足可知該函數(shù)是周期為的奇函數(shù),由遞推關系可得:,兩式做差有:,即,即數(shù)列構成首項為,公比為的等比數(shù)列,故:,綜上有:,,則:.本題選擇A選項.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】對分類討論,利用正弦函數(shù)的圖象求出和,代入,解出的范圍,即可得解.【詳解】當,即時,,,因為,所以不成立;當,即時,,,不滿足;當,即時,,,由得,得,得;當,即時,,,由得,得,得,得;當,即時,,,不滿足;當,即時,,,不滿足.綜上所述:.所以得最大值為故答案為:【點睛】關鍵點點睛:對分類討論,利用正弦函數(shù)的圖象求出和是解題關鍵.12、【解析】利用二倍角余弦公式可得令,結合二次函數(shù)的圖象與性質得到結果.【詳解】由題意得:令,則∵在上單調遞減,∴的值域為:故答案為:【點睛】本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題13、【解析】根據(jù)題意,找出存在的點,如果找不出則需證明:不存在,,使得【詳解】①因為函數(shù)是奇函數(shù),可找關于原點對稱的點,比如,存在;②假設存在不相等,,使得,即,得,矛盾,故不存在;③函數(shù)為偶函數(shù),,令,,則,存在故答案為:【點睛】關鍵點點睛:證明存在性命題,只需找到滿足條件的特殊值即可,反之需要證明不存在,一般考慮反證法,先假設存在,推出矛盾即可,屬于中檔題.14、【解析】根據(jù)誘導公式可得,然后用二倍角公式化簡,進而可求.【詳解】因為所以,故對稱軸為.故答案為:15、.【解析】當恒成立,不存在使得與同時成立,當時,恒成立,則需時,恒成立,只需時,,對的對稱軸分類討論,即可求解.【詳解】若時,恒成立,不存使得與同時成立,則時,恒成立,即時,,對稱軸為,當時,即,解得,當,即為拋物線頂點的縱坐標,,只需,.若恒成立,不存在使得與同時成立,綜上,的取值范圍是.故答案為:.【點睛】本題考查了二次函數(shù)和一次函數(shù)的圖像和性質,不等式恒成立和能成立問題的解法,考查分類討論和轉化化歸的思想方法,屬于較難題.16、[-,-)∪(,]【解析】利用周期與對稱性得出f(x)的函數(shù)圖象,根據(jù)交點個數(shù)列出不等式得出k的范圍【詳解】∵當x>2時,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期為1的函數(shù),作出y=f(x)的函數(shù)圖象如下:∵方程f(x)=kx恰有3個不同的根,∴y=f(x)與y=kx有三個交點,若k>0,則若k<0,由對稱性可知.故答案為[-,-)∪(,].【點睛】本題考查了函數(shù)零點與函數(shù)圖象的關系,函數(shù)周期與奇偶性的應用,方程根的問題常轉化為函數(shù)圖象的交點問題,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)f(x)在(0,1)上單調遞減,證明見解析.【解析】(1)根據(jù)即可求出a=b=1,從而得出;(2)容易判斷f(x)在區(qū)間(0,1)上單調遞減,根據(jù)減函數(shù)的定義證明:設x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根據(jù)x1,x2∈(0,1),且x1<x2說明f(x1)>f(x2)即可【詳解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在區(qū)間(0,1)上單調遞減,證明如下:設x1,x2∈(0,1),且x1<x2,則:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上單調遞減【點睛】本題考查減函數(shù)的定義,根據(jù)減函數(shù)的定義證明一個函數(shù)是減函數(shù)的方法和過程,清楚的單調性18、(1)(2)【解析】(1)根據(jù)偶函數(shù)的定義直接求解即可;(2)由題知命題“,”為真命題,進而得對,且恒成立,再分離參數(shù)求解即可得的取值范圍是【小問1詳解】解:因為函數(shù)為偶函數(shù),所以,即,所以,即,所以.【小問2詳解】解:因為命題“,”為假命題,所以命題“,”為真命題,所以,對,且恒成立,所以,對,且恒成立,由對勾函數(shù)性質知,函數(shù)在上單調遞增,所以,且,即實數(shù)的取值范圍是.19、(1);(2).【解析】(1)求出集合A和B,根據(jù)并集的計算方法計算即可;(2)求出,分B為空集和不為空集討論即可.【小問1詳解】,當時,,∴;【小問2詳解】{或x>4},當時,,,解得a<1;當時,若,則解得.綜上,實數(shù)的取值范圍為.20、(1),是奇函數(shù)(2)證明見解析【解析】(1)將代入,求得,再由函數(shù)奇偶性的定義判斷即可;(2)利用函數(shù)單調性的定義證明即可.【詳解】解:(1)∴∴,∴是奇函數(shù)(2)設,∵,,,∴,∴在上是單調減函數(shù).【點睛】本題考查函數(shù)解析式的求法,奇偶性的證法、單調性的證明,屬于中檔題.21、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同中的家具選購3篇
- 采購合同會審制度的創(chuàng)新路徑3篇
- 采購合同流程的策略與應用3篇
- 采購戰(zhàn)略合同的智能化發(fā)展3篇
- 采購合同框架的設計與實踐3篇
- 采購招標會務通知發(fā)布3篇
- 采購意向合同書3篇
- 2024年大安市創(chuàng)傷醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 采購合同預付款的融資風險管理3篇
- 采購框架協(xié)議年度合同3篇
- 2024-2030年中國應急行業(yè)需求趨勢及發(fā)展戰(zhàn)略分析報告
- 2024-2025學年語文二年級上冊 統(tǒng)編版期末測試卷(含答案)
- 2024-2025年江蘇專轉本英語歷年真題(含答案)
- 康復評定試題及答案
- 屋頂光伏發(fā)電項目EPC工程總承包售后服務保證措施
- 2022-2023學年廣東省深圳市鹽田區(qū)六年級上學期期末英語試卷
- 24秋國家開放大學《勞動關系與社會保障實務》形考任務1-4參考答案
- 部編版歷史初二上學期期末試題與參考答案(2024-2025學年)
- 2024-2025學年外研版小學四年級上學期期末英語試卷及解答參考
- 國際貿易實務(雙語)學習通超星期末考試答案章節(jié)答案2024年
- 2024年HOP重大事故預防-人與組織安全績效手冊
評論
0/150
提交評論