版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆云南省西疇縣第二中學數(shù)學高二上期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.22.已知橢圓:的離心率為,則實數(shù)()A. B.C. D.3.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉(zhuǎn)拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m4.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.5.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.6.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.7.的展開式中,常數(shù)項為()A. B.C. D.8.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.9.在數(shù)列中抽取部分項(按原來的順序)構(gòu)成一個新數(shù)列,記為,再在數(shù)列插入適當?shù)捻?,使它們一起能?gòu)成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.82010.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.11.已知,分別是圓和圓上的動點,點在直線上,則的最小值是()A. B.C. D.12.過點且平行于直線的直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.容積為V圓柱形密封金屬飲料罐,它的高與底面半徑比值為___________時用料最省.14.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標原點),則雙曲線C的離心率為___________.15.設是數(shù)列的前項和,且,,則__________16.拋物線的焦點坐標為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是平行四邊形,,M,N分別為的中點,.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)在平面直角坐標系xOy中,已知拋物線()的焦點F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點.19.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值20.(12分)如圖,已知三棱錐的側(cè)棱,,兩兩垂直,且,,是的中點.(1)求異面直線與所成角的余弦值;(2)求點到面的距離.(3)求二面角的平面角的正切值.21.(12分)在直角坐標系中,點到兩點、的距離之和等于,設點的軌跡為,直線與交于、兩點(1)求曲線的方程;(2)若,求的值22.(10分)在中,內(nèi)角所對的邊長分別為,是1和的等差中項(1)求角;(2)若的平分線交于點,且,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側(cè),則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側(cè),∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.2、C【解析】根據(jù)題意,先求得的值,代入離心率公式,即可得答案.【詳解】因為,所以所以,解得.故選:C3、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據(jù)是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.4、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.5、D【解析】根據(jù)漸近線方程求得關系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.6、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A7、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.8、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.9、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.10、A【解析】先聯(lián)立直線和橢圓的方程,結(jié)合中點公式及點可求a的值.【詳解】設,聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.11、B【解析】由已知可得,,求得關于直線的對稱點為,則,計算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設關于直線的對稱點為,則解得,則因為,分別在圓和圓上,所以,,則因為,所以故選:B.12、B【解析】根據(jù)平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設圓柱的底面半徑為,高為,容積為,由,得到,進而求得表面積,結(jié)合不等式,即可求解.【詳解】設圓柱的底面半徑為,高為,容積為,則,即有,可得圓柱的表面積為,當且僅當時,即時最小,即用料最省,此時,可得.故答案為:.14、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關系求解.【詳解】如圖,過F作,則E是AB中點,設漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關鍵是分別表示出,,由建立關系.15、【解析】原式為,整理為:,即,即數(shù)列是以-1為首項,-1為公差的等差的數(shù)列,所以,即.【點睛】這類型題使用的公式是,一般條件是,若是消,就需當時構(gòu)造,兩式相減,再變形求解;若是消,就需在原式將變形為:,再利用遞推求解通項公式.16、【解析】利用焦點坐標為求解即可【詳解】因為,所以,所以焦點的坐標為,故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)要證,可證,由題意可得,,易證,從而平面,即有,從而得證;(2)取中點,根據(jù)題意可知,兩兩垂直,所以以點為坐標原點,建立空間直角坐標系,再分別求出向量和平面的一個法向量,即可根據(jù)線面角的向量公式求出【詳解】(1)中,,,,由余弦定理可得,所以,.由題意且,平面,而平面,所以,又,所以(2)由,,而與相交,所以平面,因為,所以,取中點,連接,則兩兩垂直,以點為坐標原點,如圖所示,建立空間直角坐標系,則,又為中點,所以.由(1)得平面,所以平面的一個法向量從而直線與平面所成角的正弦值為【點睛】本題第一問主要考查線面垂直的相互轉(zhuǎn)化,要證明,可以考慮,題中與有垂直關系直線較多,易證平面,從而使問題得以解決;第二問思路直接,由第一問的垂直關系可以建立空間直角坐標系,根據(jù)線面角的向量公式即可計算得出18、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數(shù)值得拋物線方程;(2)設直線方程為,,直線方程代入拋物線方程后應用韋達定理得,代入可得值,得定點坐標【小問1詳解】已知雙曲線的一條漸近線方程為,即,拋物線的焦點為,所以,解得(因為),所以拋物線方程為;【小問2詳解】由題意設直線方程為,設由得,,,又,所以,所以,直線不過原點,,所以所以直線過定點19、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標系,設,結(jié)合已知確定相關點坐標,進而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.20、(1);(2);(3).【解析】(1)首先以為原點,、、分別為、、軸建立空間直角坐標系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量為,先求,再求二面角的正切值.【詳解】(1)以為原點,、、分別為、、軸建立空間直角坐標系.則有、、、.,,所以異面直線與所成角的余弦為(2)設平面的法向量為,則知:;知取,又,點到面的距離所以點到面的距離為.(3)(2)中已求平面的法向量,設平面的法向量為∵;∴取..設二面角的平面角為,則.【點睛】本題考查空間直角坐標系求解空間角和點到平面的距離,重點考查計算能力,屬于中檔題型.21、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點的軌跡;(2)本題首先可設、,然后聯(lián)立橢圓與直線方程,通過韋達定理得出、,最后通過得出,代入、的值并計算,即可得出結(jié)果.【詳解】(1)因為點到兩點、的距離之和等于,所以結(jié)合橢圓定義易知,點的軌跡是以點、為焦點且的橢圓,則,,,點的軌跡.(2)設,,聯(lián)立,整理得,則,,因為,所以,即,整理得,則,整理得,解得.【點睛】關鍵點點睛:本題考查根據(jù)橢圓定義求動點軌跡以及直線與拋物線相關問題的求解,橢圓的定義為動點到兩個定點的距離為一個固定的常數(shù),考查韋達定理的應用,考查計算能力,是難題.22、(1);(2)【解析】(1)根據(jù)是1和的等差中項得到,再利用正弦定理結(jié)合商數(shù)關系,兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年宜春市事業(yè)單位招聘742人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年宜賓發(fā)展產(chǎn)城投資限公司第三批員工公開招聘管理單位筆試遴選500模擬題附帶答案詳解
- 2025年安徽黃山市徽城投資集團限公司下屬子公司招聘6人管理單位筆試遴選500模擬題附帶答案詳解
- 2025-2030年中國木本油料產(chǎn)業(yè)運行狀況及投資前景趨勢分析報告
- 2025-2030年中國變性淀粉市場發(fā)展規(guī)模及前景趨勢分析報告
- 2025-2030年中國人體管腔內(nèi)支架行業(yè)運行狀況及發(fā)展趨勢預測報告
- 2024-2030年車輪軋機公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年組合沖擊試驗機公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年激光加工設備制造公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年中藥飲片加工搬遷改造項目可行性研究報告
- 化工建設綜合項目審批作業(yè)流程圖
- 2023-2024學年度九上圓與無刻度直尺作圖專題研究(劉培松)
- 2023年度四川公需科目:數(shù)字經(jīng)濟與驅(qū)動發(fā)展
- 汽車制造業(yè)的柔性生產(chǎn)與敏捷制造
- 五年級上冊小數(shù)乘除練習300道及答案
- 不動產(chǎn)抵押登記手續(xù)
- 公安機關執(zhí)法執(zhí)勤規(guī)范用語
- 無人機技術(shù)在消防救援中的作用與局限
- 一年級道德與法治無紙筆期末檢測質(zhì)量分析
- 形式邏輯期末考試含答案
- 自媒體賬號運營的用戶畫像分析技巧
評論
0/150
提交評論