版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省漳州市重點初中2025屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù),且在上單調(diào)遞增,則的大小關(guān)系為A B.C. D.不能確定2.滿足的集合的個數(shù)為()A. B.C. D.3.已知定義域為R的函數(shù)在單調(diào)遞增,且為偶函數(shù),若,則不等式的解集為()A. B.C. D.4.已知點在外,則直線與圓的位置關(guān)系為()A.相交B.相切C.相離D.相交、相切、相離三種情況均有可能5.已知圓錐的底面半徑為,且它的側(cè)面開展圖是一個半圓,則這個圓錐的體積為()A. B.C. D.6.函數(shù)的最小正周期是A. B.C. D.7.設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.8.在空間直角坐標(biāo)系中,點關(guān)于面對稱的點的坐標(biāo)是A. B.C. D.9.設(shè)集合,,則集合A. B.C. D.10.祖暅原理也稱祖氏原理,一個涉及幾何求積的著名命題.內(nèi)容為:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是幾何體的高.意思是兩個等高的幾何體,如在等高處的截面積相等,體積相等.設(shè)A,B為兩個等高的幾何體,p:A、B的體積相等,q:A、B在同一高處的截面積相等.根據(jù)祖暅原理可知,p是q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓,則過點且與圓C相切的直線方程為_____12.已知直線過兩直線和的交點,且原點到該直線的距離為,則該直線的方程為_____.13.在平行四邊形中,為上的中點,若與對角線相交于,且,則__________14.設(shè)a為實數(shù),若關(guān)于x的方程有實數(shù)解,則a的取值范圍是___________.15.已知向量,,若,,,則的值為__________16.已知向量滿足,且,則與的夾角為_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的終邊有一點.(1)求的值;(2)求的值.18.已知函數(shù)是上的奇函數(shù)(1)求;(2)用定義法討論在上的單調(diào)性;(3)若在上恒成立,求的取值范圍19.已知函數(shù)且(1)判斷函數(shù)的奇偶性;(2)判斷函數(shù)在上的單調(diào)性,并給出證明;(3)當(dāng)時,函數(shù)值域是,求實數(shù)與自然數(shù)的值20.已知二次函數(shù)f(x)滿足:f(0)=f(4)=4,且該函數(shù)的最小值為1(1)求此二次函數(shù)f(x)的解析式;(2)若函數(shù)f(x)的定義域為A=m,n(其中0<m<n),問是否存在這樣的兩個實數(shù)m,n,使得函數(shù)f(x)的值域也為A?若存在,求出m,n(3)若對于任意x1∈0,3,總存在x2∈1,221.已知平面向量,,,且,.(1)求和:(2)若,,求向量與向量的夾角的大小.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】當(dāng)時,,它在上單調(diào)遞增,所以.又為偶函數(shù),所以它在上單調(diào)遞減,因,故,選B.點睛:題設(shè)中的函數(shù)為偶函數(shù),故根據(jù)其在上為增函數(shù)判斷出,從而得到另一側(cè)的單調(diào)性和,故可以判斷出.2、B【解析】列舉出符合條件的集合,即可得出答案.【詳解】滿足的集合有:、、.因此,滿足的集合的個數(shù)為.故選:B.【點睛】本題考查符合條件的集合個數(shù)的計算,只需列舉出符合條件的集合即可,考查分析問題和解決問題的能力,屬于基礎(chǔ)題.3、D【解析】根據(jù)題意,由函數(shù)為偶函數(shù)分析可得函數(shù)的圖象關(guān)于直線對稱,結(jié)合函數(shù)的單調(diào)性以及特殊值分析可得,解可得的取值范圍,即可得答案【詳解】解:根據(jù)題意,函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對稱,又由函數(shù)在,單調(diào)遞增且f(3),則,解可得:,即不等式的解集為;故選:D4、A【解析】結(jié)合點與圓的位置關(guān)系,直線和圓的位置關(guān)系列不等式,由此確定正確答案.【詳解】是圓C:外一點,,圓心到直線的距離:,直線與圓相交故選:A5、A【解析】半徑為的半徑卷成一圓錐,則圓錐的母線長為,設(shè)圓錐的底面半徑為,則,即,∴圓錐的高,∴圓錐的體積,所以的選項是正確的6、D【解析】分析:直接利用周期公式求解即可.詳解:∵,,∴.故選D點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),屬于簡單題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標(biāo).7、A【解析】根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性得出的范圍,然后即可得出的大小關(guān)系.【詳解】由題意知,,即,,即,,又,即,∴故選:A8、C【解析】關(guān)于面對稱的點為9、D【解析】并集由兩個集合所有元素組成,排除重復(fù)的元素,故選.10、C【解析】根據(jù)與的推出關(guān)系判斷【詳解】已知A,B為兩個等高的幾何體,由祖暅原理知,而不能推出,可舉反例,兩個相同的圓錐,一個正置,一個倒置,此時兩個幾何體等高且體積相等,但在同一高處的截面積不相等,則是的必要不充分條件故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先判斷點在圓上,再根據(jù)過圓上的點的切線方程的方法求出切線方程.【詳解】由,則點在圓上,,所以切線斜率為,因此切線方程,整理得.故答案為:【點睛】本題考查了過圓上的點的求圓的切線方程,屬于容易題.12、或【解析】先求兩直線和的交點,再分類討論,先分析所求直線斜率不存在時是否符合題意,再分析直線斜率存在時,設(shè)斜率為,再由原點到該直線的距離為,求出,得到答案.【詳解】由和,得,即交點坐標(biāo)為,(1)當(dāng)所求直線斜率不存在時,直線方程為,此時原點到直線的距離為,符合題意;(2)當(dāng)所求直線斜率存在時,設(shè)過該點的直線方程為,化為一般式得,由原點到直線的距離為,則,解得,得所求直線的方程為.綜上可得,所求直線的方程為或故答案為:或【點睛】本題考查了求兩直線的交點坐標(biāo),由點到直線的距離求參,還考查了對直線的斜率是否存在分類討論的思想,屬于中檔題.三、13、3【解析】由題意如圖:根據(jù)平行線分線段成比例定理,可知,又因為,所以根據(jù)三角形相似判定方法可以知道∵為的中點∴相似比為∴∴故答案為314、【解析】令,將原問題轉(zhuǎn)化為方程有正根,利用判別式及韋達(dá)定理列出不等式組求解即可得答案.【詳解】解:方程可化,令,則,所以原問題轉(zhuǎn)化為方程有正根,設(shè)兩根分別為,則,解得,所以的取值范圍是,故答案為:.15、C【解析】分析:由,,,可得向量與平行,且,從而可得結(jié)果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標(biāo)運算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應(yīng)用,屬于中檔題16、##【解析】根據(jù)平面向量的夾角公式即可求出【詳解】設(shè)與的夾角為,由夾角余弦公式,解得故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)終邊上的點及正切函數(shù)的定義求即可.(2)利用誘導(dǎo)公式及商數(shù)關(guān)系,將目標(biāo)式化為,結(jié)合(1)的結(jié)果求值即可.【小問1詳解】由題設(shè)及正切函數(shù)的定義,.【小問2詳解】.18、(1);(2)是上的增函數(shù);(3).【解析】(1)利用奇函數(shù)的定義直接求解即可;(2)用函數(shù)的單調(diào)性的定義,結(jié)合指數(shù)函數(shù)的單調(diào)性直接求解即可;(3)利用函數(shù)的奇函數(shù)的性質(zhì)、單調(diào)性原問題可以轉(zhuǎn)化為在上恒成立,利用換元法,再轉(zhuǎn)化為一元二次不等式恒成立問題,分類討論,最后求出的取值范圍.【詳解】(1)函數(shù)是上的奇函數(shù)即即解得;(2)由(1)知設(shè),則故,,故即是上的增函數(shù)(3)是上的奇函數(shù),是上的增函數(shù)在上恒成立等價于等價于在上恒成立即在上恒成立“*”令則“*”式等價于對時恒成立“**”①當(dāng),即時“**”為對時恒成立②當(dāng),即時,“**”對時恒成立須或解得綜上,的取值范圍是【點睛】本題考查了奇函數(shù)的定義,考查了函數(shù)單調(diào)性的定義,考查了指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查了不等式恒成立問題,考查了換元法,考查了數(shù)學(xué)運算能力.19、(1)奇函數(shù),證明見解析;(2)答案見解析,證明見解析;(3),.【解析】(1)利用奇偶性定義判斷奇偶性.(2)利用單調(diào)性定義,結(jié)合作差法、分類討論思想求的單調(diào)性.(3)由題設(shè)得且,結(jié)合(2)有在上遞減,結(jié)合函數(shù)的區(qū)間值域,求參數(shù)a、n即可.【小問1詳解】由題設(shè)有,可得函數(shù)定義域為,,所以為奇函數(shù).【小問2詳解】令,則,又,則,當(dāng)時,,即,則在上遞增.當(dāng)時,,即,則在上遞減.【小問3詳解】由,則,即,結(jié)合(2)知:在上遞減且值域為,要使在值域是,則且,即,所以,又,故.綜上,,【點睛】關(guān)鍵點點睛:第三問,注意,即有在上遞減,再根據(jù)區(qū)間值域求參數(shù).20、(1)f(x)=34x2-3x+4(2)存在滿足條件的m,n,其中【解析】1設(shè)f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2時,當(dāng)m<2<n時,當(dāng)2≤m<n時,三種情況討論,可得滿足條件的m,n,其中m=1,n=4;3若對于任意的x1∈0,3,總存在x解析:(1)依題意,可設(shè)f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假設(shè)存在這樣的m,n,分類討論如下:當(dāng)m<n≤2時,依題意,f(m)=n,f(n)=m,即3m+n=83,代入進(jìn)一步得當(dāng)m<2<n時,依題意m=f(2)=1,若n>3,f(n)=n,解得n=4或43若2<n≤3,n=f(1)=7當(dāng)2≤m<n時,依題意,f(m)=m,f(n)=n,即34m2-3m+4=m,綜上:存在滿足條件的m,n,其中m=1,n=4.(3)依題意:2x由(1)可知,f(x1即2x2+整理得a>-2x22又y=-2x2+5x=-2(x-54)依題意:a>2點睛:本題重點考查了二次函數(shù)性質(zhì),運用待定系數(shù)法求得二次函數(shù)的解析式,在求二次函數(shù)的值域時注意分類討論,解出符合條件的結(jié)果,當(dāng)遇到“任意的x1,總存在x221、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)澆樓蓋 課程設(shè)計
- 2025年度地下空間開發(fā)個人工程勞務(wù)分包合同范本4篇
- 2024年心理咨詢師題庫附答案(典型題)
- 二零二五版門衛(wèi)服務(wù)外包與社區(qū)安全防范系統(tǒng)承包4篇
- 2025年度草坪圍欄施工與智慧城市建設(shè)合同3篇
- 植筋膠施工方案
- 二零二五年度棉花品牌建設(shè)與推廣合同4篇
- 2024酒店宴會廳租賃與客戶服務(wù)協(xié)議版B版
- 地板磚拆除施工方案
- 工地跳板擋墻施工方案
- 10kV架空線路專項施工方案
- OGSM戰(zhàn)略規(guī)劃框架:實現(xiàn)企業(yè)目標(biāo)的系統(tǒng)化方法論
- 遼寧省大連市中山區(qū)2023-2024學(xué)年七年級下學(xué)期期末數(shù)學(xué)試題
- 2023年版《安寧療護實踐指南(試行)》解讀課件
- 2024年新課標(biāo)高考化學(xué)試卷(適用黑龍江、遼寧、吉林地區(qū) 真題+答案)
- AQ6111-2023個體防護裝備安全管理規(guī)范
- 鈷酸鋰-安全技術(shù)說明書MSDS
- 江蘇省“大唐杯”全國大學(xué)生新一代信息通信技術(shù)大賽省賽題庫(含答案)
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 如何做好談話筆錄
- 偏頭痛的治療及護理
評論
0/150
提交評論