版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆天津一中高三下學(xué)期周考數(shù)學(xué)試題(重點(diǎn))試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.102.在平面直角坐標(biāo)系中,若不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.5.已知為一條直線(xiàn),為兩個(gè)不同的平面,則下列說(shuō)法正確的是()A.若,則 B.若,則C.若,則 D.若,則6.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.47.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”8.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.9.已知曲線(xiàn)且過(guò)定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.10.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,則的最小值為()A. B. C. D.11.已知奇函數(shù)是上的減函數(shù),若滿(mǎn)足不等式組,則的最小值為()A.-4 B.-2 C.0 D.412.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個(gè)數(shù)為()A.1 B.2 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.若滿(mǎn)足,則目標(biāo)函數(shù)的最大值為_(kāi)_____.14.已知等差數(shù)列的前n項(xiàng)和為Sn,若,則____.15.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為_(kāi)_________.16.(5分)在長(zhǎng)方體中,已知棱長(zhǎng),體對(duì)角線(xiàn),兩異面直線(xiàn)與所成的角為,則該長(zhǎng)方體的表面積是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.18.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.19.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.20.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線(xiàn)相切,動(dòng)圓圓心的軌跡為,過(guò)作斜率為的直線(xiàn)與交于兩點(diǎn),過(guò)分別作的切線(xiàn),兩切線(xiàn)的交點(diǎn)為,直線(xiàn)與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線(xiàn)上且;(2)求四邊形的面積的最小值.21.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專(zhuān)項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過(guò)畫(huà)散點(diǎn)圖發(fā)現(xiàn)與之間具有線(xiàn)性相關(guān)關(guān)系,求關(guān)于的線(xiàn)性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該校考人名校的人數(shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,22.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)直線(xiàn)過(guò)定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱(chēng)性,可得結(jié)果.【詳解】由題可知:直線(xiàn)過(guò)定點(diǎn)且在是關(guān)于對(duì)稱(chēng)如圖通過(guò)圖像可知:直線(xiàn)與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱(chēng)所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱(chēng)性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫(huà)出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.2、B【解析】
依據(jù)線(xiàn)性約束條件畫(huà)出可行域,目標(biāo)函數(shù)恒過(guò),再分別討論的正負(fù)進(jìn)一步確定目標(biāo)函數(shù)與可行域的基本關(guān)系,即可求解【詳解】作出不等式對(duì)應(yīng)的平面區(qū)域,如圖所示:其中,直線(xiàn)過(guò)定點(diǎn),當(dāng)時(shí),不等式表示直線(xiàn)及其左邊的區(qū)域,不滿(mǎn)足題意;當(dāng)時(shí),直線(xiàn)的斜率,不等式表示直線(xiàn)下方的區(qū)域,不滿(mǎn)足題意;當(dāng)時(shí),直線(xiàn)的斜率,不等式表示直線(xiàn)上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點(diǎn),使不等式成立,只需直線(xiàn)的斜率,解得.綜上可得實(shí)數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)有解求解參數(shù)取值范圍問(wèn)題,分類(lèi)討論與數(shù)形結(jié)合思想,屬于中檔題3、C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)椋沟?,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問(wèn)題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問(wèn)題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱(chēng)命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問(wèn)題和解答問(wèn)題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.4、D【解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.5、D【解析】A.若,則或,故A錯(cuò)誤;B.若,則或故B錯(cuò)誤;C.若,則或,或與相交;D.若,則,正確.故選D.6、A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類(lèi)推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.7、B【解析】
通過(guò)與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.8、D【解析】
以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.9、A【解析】
根據(jù)指數(shù)型函數(shù)所過(guò)的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.10、D【解析】
由,可求出等比數(shù)列的通項(xiàng)公式,進(jìn)而可知當(dāng)時(shí),;當(dāng)時(shí),,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時(shí),;當(dāng)時(shí),,則的最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于中檔題.11、B【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫(huà)出可行域和目標(biāo)函數(shù),,即,表示直線(xiàn)與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線(xiàn)過(guò)點(diǎn),即時(shí),有最小值為.故選:.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線(xiàn)性規(guī)劃問(wèn)題,意在考查學(xué)生的綜合應(yīng)用能力,畫(huà)出圖像是解題的關(guān)鍵.12、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個(gè)數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個(gè)數(shù)為3.故選:C.【點(diǎn)睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),直線(xiàn)在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.14、【解析】
由,,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點(diǎn)睛】本題主要考查等差數(shù)列前n項(xiàng)和的性質(zhì),相對(duì)不難.15、【解析】
根據(jù)題意,畫(huà)出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線(xiàn)段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線(xiàn)面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.16、10【解析】
作出長(zhǎng)方體如圖所示,由于,則就是異面直線(xiàn)與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長(zhǎng)方體的表面積為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)取的中點(diǎn)D,連結(jié),.根據(jù)線(xiàn)面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線(xiàn)且交于點(diǎn),由(1)得,再結(jié)合線(xiàn)面垂直的判定定理即得.【詳解】(1)取的中點(diǎn)D,連結(jié),.在中,P,D分別為,中點(diǎn),,且.在直三棱柱中,,.Q為棱的中點(diǎn),,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點(diǎn),.由(1)知,,.又,平面,平面,平面.【點(diǎn)睛】本題考查線(xiàn)面平行的判定定理,以及線(xiàn)面垂直的判定定理,難度不大.18、(1)詳見(jiàn)解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線(xiàn)面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點(diǎn)睛】本題主要考查線(xiàn)線(xiàn)垂直、線(xiàn)面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.19、(Ⅰ)見(jiàn)解析;(Ⅱ)【解析】
(Ⅰ)要證明線(xiàn)面平行,需先證明線(xiàn)線(xiàn)平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫?,平面,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切?,所以,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點(diǎn)睛】本題考查證明線(xiàn)面平行,計(jì)算體積,意在考查推理證明,空間想象能力,計(jì)算能力,屬于中檔題型,一般證明線(xiàn)面平行的方法1.證明線(xiàn)線(xiàn)平行,則線(xiàn)面平行,2.證明面面平行,則線(xiàn)面平行,關(guān)鍵是證明線(xiàn)線(xiàn)平行,一般構(gòu)造平行四邊形,則對(duì)邊平行,或是構(gòu)造三角形中位線(xiàn).20、(1)見(jiàn)解析(2)最小值為1.【解析】
(1)根據(jù)拋物線(xiàn)的定義,判斷出的軌跡為拋物線(xiàn),并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線(xiàn)的方程,由此求得點(diǎn)的坐標(biāo).寫(xiě)出直線(xiàn)的方程,聯(lián)立直線(xiàn)的方程和曲線(xiàn)的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線(xiàn)上,且.(2)設(shè)直線(xiàn)的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動(dòng)圓過(guò)定點(diǎn),且與直線(xiàn)相切,∴動(dòng)圓圓心到定點(diǎn)和定直線(xiàn)的距離相等,∴動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線(xiàn),∴軌跡的方程為:,設(shè),∴直線(xiàn)的方程為:,即:①,同理,直線(xiàn)的方程為:②,由①②可得:,直線(xiàn)方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線(xiàn)上且;(2)設(shè)直線(xiàn)的傾斜角為,由(1)可得:,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生物科技研發(fā)合伙人合作協(xié)議(知識(shí)產(chǎn)權(quán)保護(hù))2篇
- 2025年度房地產(chǎn)項(xiàng)目開(kāi)盤(pán)儀式策劃合同4篇
- 二零二五年度出租車(chē)行業(yè)安全責(zé)任與保險(xiǎn)合同2篇
- 二零二五年度健康養(yǎng)生項(xiàng)目投資合作協(xié)議3篇
- 二零二五年度畜牧業(yè)產(chǎn)業(yè)鏈供應(yīng)鏈合作協(xié)議4篇
- 2025年度個(gè)人合伙投資房地產(chǎn)項(xiàng)目合作協(xié)議4篇
- 政府職能與公共選擇-深度研究
- 2025年度高空作業(yè)安全責(zé)任書(shū)范本3篇
- 團(tuán)隊(duì)角色分工與協(xié)作-深度研究
- 智能控制塊接口-深度研究
- 化學(xué)-河南省TOP二十名校2025屆高三調(diào)研考試(三)試題和答案
- 智慧農(nóng)貿(mào)批發(fā)市場(chǎng)平臺(tái)規(guī)劃建設(shè)方案
- 林下野雞養(yǎng)殖建設(shè)項(xiàng)目可行性研究報(bào)告
- 2023年水利部黃河水利委員會(huì)招聘考試真題
- Python編程基礎(chǔ)(項(xiàng)目式微課版)教案22
- 01J925-1壓型鋼板、夾芯板屋面及墻體建筑構(gòu)造
- 欠電費(fèi)合同范本
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(kù)(共250余題)
- 網(wǎng)易云音樂(lè)用戶(hù)情感畫(huà)像研究
- 小學(xué)四年級(jí)奧數(shù)題平均數(shù)問(wèn)題習(xí)題及答案
- 工作違紀(jì)違規(guī)檢討書(shū)范文
評(píng)論
0/150
提交評(píng)論