大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題含解析_第1頁
大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題含解析_第2頁
大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題含解析_第3頁
大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題含解析_第4頁
大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

大連市重點中學2025屆高二上數(shù)學期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,底面ABCD是正方形,側棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.42.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則3.中國景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個精美的青花瓷花瓶,它的頸部(圖2)外形上下對稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉所形成的曲面,若該頸部中最細處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.404.已知集合,則()A. B.C. D.5.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=16.設分別是橢圓的左、右焦點,P是C上的點,則的周長為()A.13 B.16C.20 D.7.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.8.已知點是拋物線上的一點,F是拋物線的焦點,則點M到F的距離等于()A.6 B.5C.4 D.29.以軸為對稱軸,頂點為坐標原點,焦點到準線的距離為4的拋物線方程是()A. B.C.或 D.或10.已知等比數(shù)列的公比為q,且,則“”是“是遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.某地為響應總書記關于生態(tài)文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數(shù)據.如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據)()A.60米 B.120米C.150米 D.300米12.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)是R上的單調遞增函數(shù),則a的取值范圍是______14.已知直線與垂直,則m的值為______15.如圖,在等腰直角中,,為半圓弧上異于,的動點,當半圓弧繞旋轉的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J為正確的結果的序號).16.已知空間向量,,則向量在向量上的投影向量的坐標是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:其中一個數(shù)字被污損.(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對成語知識的學習積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機統(tǒng)計了4位觀眾的周均學習成語知識的時間(單位:小時)與年齡(單位:歲),并制作了對照表(如下表所示)年齡(歲)20304050周均學習成語知識時間(小時)2.5344.5由表中數(shù)據,試求線性回歸方程,并預測年齡為55歲觀眾周均學習成語知識時間.參考公式:,.18.(12分)如圖,在直三棱柱中,,,,為的中點,點,分別在棱,上,,.(1)求點到直線的距離(2)求平面與平面夾角的余弦值.19.(12分)已知圓C的圓心在直線上,且過點.(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,且,求m的值.20.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.21.(12分)已知圓C:,直線l:.(1)當a為何值時,直線l與圓C相切;(2)當直線l與圓C相交于A,B兩點,且|AB|=時,求直線l的方程.22.(10分)已知函數(shù)(1)討論函數(shù)的單調性;(2)若對任意的,都有成立,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據邊長證明△DEO是等邊三角形即可;④根據等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.2、B【解析】根據線線,線面,面面位置關系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.3、B【解析】設雙曲線方程為,根據已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因為雙曲線焦點在軸上,設雙曲線方程為由雙曲線的性質可知:該頸部中最細處直徑為實軸長,所以,可得,因為離心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據對稱性可知頸部最右點橫坐標為,將代入雙曲線可得,解得:,所以頸部高為,故選:B4、D【解析】由集合的關系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎題.5、A【解析】根據雙曲線定義求解【詳解】,則根據雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題6、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B7、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數(shù),再求出總的基本事件數(shù),從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結果.將一枚骰子先后拋擲兩次,若先后出現(xiàn)的點數(shù)分別記為a,b,共有種結果所以滿足條件的概率為故選:C8、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.9、C【解析】根據拋物線的概念以及幾何性質即可求拋物線的標準方程.【詳解】依題意設拋物線方程為因為焦點到準線的距離為4,所以,所以,所以拋物線方程或故選:C10、B【解析】利用充分條件和必要條件的定義結合等比數(shù)列的性質分析判斷【詳解】當時,則,則數(shù)列為遞減數(shù)列,當是遞增數(shù)列時,,因為,所以,則可得,所以“”是“是遞增數(shù)列”的必要不充分條件,故選:B11、C【解析】應用正弦定理有,結合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C12、A【解析】先聯(lián)立直線和橢圓的方程,結合中點公式及點可求a的值.【詳解】設,聯(lián)立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對求導,由題設有恒成立,再利用導數(shù)求的最小值,即可求a的范圍.【詳解】由題設,,又在R上的單調遞增函數(shù),∴恒成立,令,則,∴當時,則遞減;當時,則遞增.∴,故.故答案為:.14、0或-9##-9或0【解析】根據給定條件利用兩直線互相垂直的性質列式計算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-915、①②④【解析】①當D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當D在平面ABC內的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當D為中點,且A,B,C,D四點共面時,連結BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當D在平面ABC內的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當平面平面ABC,且D為中點時,h有最大值;當A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設,則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.16、【解析】根據投影向量的計算公式,計算出正確答案.【詳解】向量在向量上的投影向量的坐標是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)詳見解析.【解析】(1)先根據兩個平均值的大小得到的取值范圍,再利用古典概型的概率公式進行求解;(2)先利用最小二乘法求出線性回歸方程,再利用方程進行預測.試題解析:(1)設被污損的數(shù)字為,則的所有可能取值為:0,1,2,3,4,5,6,7,8,9共10種等可能結果,令,解得,則滿足“東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的”的取值有0,1,2,3,4,5,6,7共8個,所以其概率為.(2)由表中數(shù)據得,,∴,線性回歸方程.可預測年齡為55觀眾周均學習成語知識時間為4.9小時.18、(1);(2).【解析】(1)由直棱柱的性質及勾股定理求出△各邊長,應用余弦定理求,進而可得其正弦值,再求邊上的高即可.(2)以為原點,,,所在直線為x軸、y軸、z軸,建立空間直角坐標系,然后求出兩個平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設,,,,由直棱柱性質及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點,,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標系易知:,,,則,因為平面,所以平面的一個法向量為設平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為19、(1)(2)或【解析】(1)由已知設圓C的方程為,點代入計算即可得出結果.(2)由已知可得圓心C到直線的距離,利用點到直線的距離公式計算即可求得值.【小問1詳解】設圓心坐標為,半徑為,圓C的圓心在直線上,.則圓C的方程為,圓C過點,則,解得:則,圓C的圓心坐標為.則圓C的方程為;【小問2詳解】圓心C到直線的距離.則,解得或20、(1)證明見解析:(2)【解析】(1)代入,求導分析函數(shù)單調性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導函數(shù)的零點即可.【詳解】(1)證明:當時,,則,當時,,則,又因為,所以當時,,僅時,,所以在上是單調遞減,所以,即.(2),因為,所以,①當時,恒成立,所以在上單調遞增,沒有極值點.②當時,在區(qū)間上單調遞增,因為.當時,,所以在上單調遞減,沒有極值點.當時,,所以存在,使當時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導函數(shù)求解函數(shù)的單調性與最值,進而證明不等式的方法.同時也考查了利用導數(shù)分析函數(shù)極值點的問題,需要結合零點存在定理求解.屬于難題.21、(1);(2)或.【解析】(1)由題設可得圓心為,半徑,根據直線與圓的相切關系,結合點線距離公式列方程求參數(shù)a的值即可.(2)根據圓中弦長、半徑與弦心距的幾何關系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論