版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省桐鄉(xiāng)市鳳鳴高級中學2025屆高二上數學期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.22.已知雙曲線,則雙曲線的離心率為()A. B.C. D.3.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.4.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.5.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.6.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.7.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.98.下列關于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為9.函數在上的最小值為()A. B.C.-1 D.10.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D11.《九章算術》是我國古代的數學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數成等差數列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數為()A.14 B.20C.18 D.1612.已知,則下列不等式一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將某校全體高一年級學生期末數學成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,現(xiàn)需要隨機抽取60名學生進行問卷調查,采用按成績分層隨機抽樣,則應抽取成績不少于60分的學生人數為_______________.14.函數的導函數___________.15.已知直線l:和圓C:,過直線l上一點P作圓C的一條切線,切點為A,則的最小值為______16.設橢圓的左,右焦點分別為,,過的直線l與C交于A,B兩點(點A在x軸上方),且滿足,則直線l的斜率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前項和為,,且.(1)求數列的通項公式;(2)證明:數列的前項和.18.(12分)已知數列的前n項和為,,,其中.(1)記,求證:是等比數列;(2)設,數列的前n項和為,求證:.19.(12分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.20.(12分)2020年10月,中共中央辦公廳、國務院辦公廳印發(fā)了《關于全面加強和改進新時代學校體育工作的意見》,某地積極開展中小學健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數,規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學生一分鐘跳繩情況,隨機抽取了100名學生測試,其一分一分鐘跳繩個數成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學生跳繩成績不及格,求在進行測試的100名學生中跳繩成績不及格的人數為多少?(2)該學校決定由這次跳繩測試一分鐘跳繩個數在205以上(包括205)的學生組成“小小教練員"團隊,小明和小華是該團隊的成員,現(xiàn)學校要從該團隊中選派2名同學參加某跳繩比賽,求小明和小華至少有一人被選派的概率21.(12分)已知函數,求函數在上的最大值與最小值.22.(10分)已知極坐標系的極點在直角坐標系的原點處,極軸與軸的正半軸重合,直線的極坐標方程為,曲線的參數方程是(是參數)(1)求直線的直角坐標方程及曲線的普通方程;(2)求曲線上的點到直線的距離的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數的實際應用,考查了學生的應用意識.2、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.3、C【解析】根據雙曲線和直線的對稱性,結合矩形的性質、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設雙曲線的右焦點為F2,過原點傾斜角為的直線為,設M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質可知:,由雙曲線的定義可知:,故選:C【點睛】關鍵點睛:利用矩形的性質、雙曲線的定義是解題的關鍵.4、D【解析】由題設可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設,則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.5、A【解析】求出,分析可得,可得出關于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點、關于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.6、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A7、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.8、A【解析】把化成拋物線標準方程,依據拋物線幾何性質看開口方向,求其焦點坐標即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A9、D【解析】求出函數的導函數,根據導數的符號求出函數的單調區(qū)間,再根據函數的單調性即可得出答案.【詳解】解:因為,所以,當時,,單調遞減;當時,,單調遞增,故.故選:D.10、A【解析】由已知,分別表示出選項對應的向量,然后利用平面向量共線定理進行判斷即可完成求解.【詳解】因,,,選項A,,,若A,B,D三點共線,則,即,解得,故該選項正確;選項B,,,若A,B,C三點共線,則,即,解得不存,故該選項錯誤;選項C,,,若B,C,D三點共線,則,即,解得不存在,故該選項錯誤;選項D,,,若A,C,D三點共線,則,即,解得不存在,故該選項錯誤;故選:A.11、D【解析】根據題意,建立等差數列模型,結合等差數列公式求解即可.【詳解】解:根據題意,設每人所出錢數成等差數列,公差為,前項和為,則由題可得,解得,所以不更出的錢數為.故選:D.12、B【解析】運用不等式的性質及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】根據頻率分布直方圖,求出成績不少于分的頻率,然后根據頻數頻率總數,即可求出結果【詳解】根據頻率分布直方圖,成績不低于(分)的頻率為,由于需要隨機抽取名學生進行問卷調查,利用樣本估計總體的思想,則應抽取成績不少于60分的學生人數為人故答案為:14、【解析】利用導函數的乘法公式和復合函數求導法則進行求解【詳解】故答案為:15、1【解析】求出圓C的圓心坐標、半徑,再借助圓的切線性質及勾股定理列式計算作答.【詳解】圓C:,圓心為,半徑,點C到直線l的距離,由圓的切線性質知:,當且僅當,即點P是過點C作直線l的垂線的垂足時取“=”,所以的最小值為1故答案為:116、【解析】設出直線的方程并與橢圓方程聯(lián)立,結合根與系數關系以及求得直線的斜率.【詳解】橢圓,由于在軸上方且直線的斜率存在,所以直線的斜率不為,設直線的方程為,且,由,消去并化簡得,設,,則①,②,由于,所以③,由①②③解得所以直線的方程為,斜率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析.【解析】(1)設等差數列的公差為,根據題意可得出關于、的方程組,解出這兩個量的值,可得出數列的通項公式;(2)求得,利用裂項法可求得,即可證得原不等式成立.【小問1詳解】解:設等差數列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.18、(1)證明見解析;(2)證明見解析.【解析】(1)應用的關系,結合構造法可得,根據已知條件及等比數列的定義即可證結論.(2)由(1)得,再應用錯位相減法求,即可證結論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.19、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結合,可得平面,進而可得結論;(2)取的中點,的中點,連接,,以點為坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,求這兩個法向量的夾角即可得結果.【詳解】解:(1)因為平面平面,交線為,又,所以平面,,又,,則平面,平面,所以,;(2)取的中點,的中點,連接,,則平面,平面;以點坐標原點,分別以,,為軸,軸,軸建立空間直角坐標系如圖所示,已知,則,,,,,,則,,設平面的一個法向量,由得令,則,,即;平面的一個法向量為;.所以二面角的余弦值為.【點睛】本題考查線線垂直的證明以及空間向量發(fā)求面面角,考查學生計算能力以及空間想象能力,是中檔題.20、(1)14人;(2).【解析】(1)根據頻率直方表區(qū)間成績及其對應的頻率,即可求每分鐘跳繩成績不足18分的人數.(2)由表格數據求出一分鐘跳繩個數在205以上(包括205)的學生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學生中跳繩成績不及格人數為:人)(2)一分鐘跳繩個數在205以上(包括205)的學生頻率為,其人數為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.21、最大值為,最小值為【解析】利用導數可求得的單調性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帶你認識什么是結構化面試
- 化學反應工程試卷
- 2024美容院美容院與養(yǎng)生館合作經營協(xié)議范本3篇
- 2024年度現(xiàn)代農業(yè)技術研發(fā)人員聘用合同模板3篇
- 2025年度酒店廚師團隊承包與客房服務一體化合同3篇
- 2025年度校園食堂食品安全培訓及供餐服務協(xié)議3篇
- 馬鞍山師范高等??茖W校《光伏設備概論》2023-2024學年第一學期期末試卷
- 四川工商學院《英語聽說Ⅰ》2023-2024學年第一學期期末試卷
- 鄭州電子信息職業(yè)技術學院《微生物學實驗C》2023-2024學年第一學期期末試卷
- 天津財經大學《橋牌與博弈論》2023-2024學年第一學期期末試卷
- 質量安全總監(jiān)和質量安全員考核獎懲制度
- 2024年白山客運資格證題庫
- 土地成片開發(fā)運營模式與案例
- 快樂讀書吧:中國民間故事(專項訓練)-2023-2024學年五年級語文上冊(統(tǒng)編版)
- 機動車駕駛培訓理論科目一考試題庫500題(含標準答案)
- 職業(yè)技術學院《工程力學》課程標準
- 新高考6選3選科指導與生涯規(guī)劃課件
- 科技成果技術成熟度評估規(guī)范
- 冠狀動脈微血管疾病診斷和治療中國專家共識(2023版)解讀
- 2024年全國職業(yè)院校技能大賽“新型電力系統(tǒng)與維護”賽項考試題庫-上(單選題)
- 《列那狐的故事》導讀課 教學設計-2024-2025學年統(tǒng)編版語文五年級上冊
評論
0/150
提交評論