![河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第1頁](http://file4.renrendoc.com/view14/M06/33/1E/wKhkGWcP9rmAXagaAAHsQC0Lo0w404.jpg)
![河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第2頁](http://file4.renrendoc.com/view14/M06/33/1E/wKhkGWcP9rmAXagaAAHsQC0Lo0w4042.jpg)
![河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第3頁](http://file4.renrendoc.com/view14/M06/33/1E/wKhkGWcP9rmAXagaAAHsQC0Lo0w4043.jpg)
![河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第4頁](http://file4.renrendoc.com/view14/M06/33/1E/wKhkGWcP9rmAXagaAAHsQC0Lo0w4044.jpg)
![河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題含解析_第5頁](http://file4.renrendoc.com/view14/M06/33/1E/wKhkGWcP9rmAXagaAAHsQC0Lo0w4045.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省許平汝2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,且,那么()A. B.C. D.2.已知,則下列不等式一定成立的是()A. B.C. D.3.關(guān)于實數(shù)a,b,c,下列說法正確的是()A.如果,則,,成等差數(shù)列B.如果,則,,成等比數(shù)列C.如果,則,,成等差數(shù)列D.如果,則,,成等差數(shù)列4.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm5.丹麥數(shù)學(xué)家琴生(Jensen)是世紀(jì)對數(shù)學(xué)分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在上的導(dǎo)函數(shù)為,在上的導(dǎo)函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.6.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.7.已知,分別為雙曲線:的左,右焦點,以為直徑的圓與雙曲線的右支在第一象限交于點,直線與雙曲線的右支交于點,點恰好為線段的三等分點(靠近點),則雙曲線的離心率等于()A. B.C. D.8.已知變量x,y具有線性相關(guān)關(guān)系,它們之間的一組數(shù)據(jù)如下表所示,若y關(guān)于x的線性回歸方程為,則m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.39.已知,若與的展開式中的常數(shù)項相等,則()A.1 B.3C.6 D.910.設(shè)雙曲線的方程為,過拋物線的焦點和點的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.11.已知等比數(shù)列滿足,則()A.168 B.210C.672 D.105012.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________14.若“,”是真命題,則實數(shù)m的取值范圍________.15.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經(jīng)過點,則雙曲線的離心率為_______16.直線過點,且原點到直線l的距離為,則直線方程是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項積,數(shù)列為等差數(shù)列,且,(1)求與的通項公式;(2)若,求數(shù)列的前n項和18.(12分)已知函數(shù)(1)求函數(shù)單調(diào)區(qū)間;(2)函數(shù)在區(qū)間上的最小值小于零,求a的取值范圍19.(12分)已知數(shù)列為等差數(shù)列,為其前n項和,若,(1)求數(shù)列的首項和公差;(2)求的最小值.20.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分?jǐn)?shù)的形式);(2)為了解該車間工人的生產(chǎn)速度是否與他們的工作經(jīng)驗有關(guān),現(xiàn)從車間所有工人中隨機抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時)4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計公式為:,21.(12分)已知橢圓的右焦點為,且經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點為,過點的直線(與軸不重合)交橢圓于兩點,直線交直線于點,若直線上存在另一點,使.求證:三點共線.22.(10分)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表:零件的個數(shù)x(個)2345加工的時間y(小時)2.5344.5(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖.(2)求出y關(guān)于x的線性回歸方程,試預(yù)測加工10個零件需要多少小時?(注:,)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由遞推公式得到,,,再結(jié)合已知即可求解.【詳解】解:由,得,,又,那么故選:D2、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B3、B【解析】根據(jù)給定條件結(jié)合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數(shù)列,A不正確;對于B,若,則,即,,成等比數(shù)列,B正確;對于C,若,取,而,,,不成等差數(shù)列,C不正確;對于D,a,b,c是實數(shù),若,顯然都可以為負(fù)數(shù)或者0,此時a,b,c無對數(shù),D不正確.故選:B4、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B5、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當(dāng)時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B6、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負(fù)【詳解】∵,∴和異號,又?jǐn)?shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關(guān)鍵點睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時成立的的值,解題時應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.7、C【解析】設(shè),,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關(guān)于,的方程,再由離心率公式即可求解.【詳解】設(shè),則,由雙曲線的定義可得:,,因為點在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題8、A【解析】先求得樣本中心,代入回歸方程,即可得答案.【詳解】由題意得,又樣本中心在回歸方程上,所以,解得.故選:A9、B【解析】根據(jù)二項展開式的通項公式即可求出【詳解】的展開式中的常數(shù)項為,而的展開式中的常數(shù)項為,所以,又,所以故選:B10、D【解析】由拋物線的焦點可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因為,解得故選:【點睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題11、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù),即可求得結(jié)果.【詳解】等比數(shù)列滿足,設(shè)等比數(shù)列的公比為q,所以,解得,故,故選:C12、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關(guān)于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.14、【解析】由于“,”是真命題,則實數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,據(jù)此即可求出結(jié)果.【詳解】由于“,”是真命題,則實數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,即.故答案為:【點睛】本題主要考查了存在量詞命題的概念的理解,以及數(shù)學(xué)轉(zhuǎn)換思想,屬于基礎(chǔ)題.15、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設(shè)雙曲線:,,不妨設(shè)為雙曲線右支上一點因為線段的垂直平分線恰好經(jīng)過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:16、【解析】直線斜率不存在不滿足題意,即設(shè)直線的點斜式方程,再利用點到直線的距離公式,求出的值,即可求出直線方程.【詳解】①當(dāng)直線斜率不存在時,顯然不滿足題意.②當(dāng)直線斜率存在時,設(shè)直線為.原點到直線l的距離為,即直線方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數(shù)列的公差為,由等差數(shù)列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數(shù)列的前n項積,所以,所以,兩式相除得,因為數(shù)列為等差數(shù)列,且,,所以,即,所以數(shù)列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.18、(1)答案見解析;(2).【解析】(1)對求導(dǎo)并求定義域,討論、分別判斷的符號,進而確定單調(diào)區(qū)間.(2)由題設(shè),結(jié)合(1)所得的單調(diào)性,討論、、分別確定在給定區(qū)間上的最小值,根據(jù)最小值小于零求參數(shù)a的范圍.【小問1詳解】由題設(shè),且定義域為,當(dāng),即時,在上,即在上遞增;當(dāng),即時,在上,在上,所以在上遞減,在上遞增;【小問2詳解】由(1)知:若,即時,則在上遞增,故,可得;若,即時,則在上遞減,在上遞增,故,不合題設(shè);若,即時,則在上遞減,故,得;綜上,a的取值范圍.19、(1)首項為-2,公差為1;(2).【解析】(1)設(shè)出等差數(shù)列的公差,再結(jié)合前n項和公式列式計算作答.(2)由(1)的結(jié)論,探求數(shù)列的性質(zhì)即可推理計算作答.【小問1詳解】設(shè)等差數(shù)列首項為,公差為,而為其前n項和,,,于是得:,解得,,所以,.【小問2詳解】由(1)知,,,,數(shù)列是遞增數(shù)列,前3項均為非正數(shù),從第4項起為正數(shù),而,于是得的前2項和與前3項和相等并且最小,所以當(dāng)或時,.20、(1)(2)80件/小時【解析】(1)先利用等差數(shù)列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預(yù)測其生產(chǎn)速度.【小問1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當(dāng)時,,即估計該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時.21、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點M的坐標(biāo),求出點N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點,由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點,直線的斜率,直線的斜率,,而,即,所以三點共線.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶節(jié)團建主題活動方案
- ktv國慶節(jié)的朋友圈活動方案
- 2024-2025學(xué)年新教材高中語文 第三單元 7.1 青蒿素:人類征服疾病的一小步(1)說課稿 部編版必修下冊
- 2024-2025學(xué)年高中語文 第二單元 七 仁義禮智我固有之說課稿5 新人教版選修《先秦諸子選讀》
- 2025變更勞動合同范文
- 2025智能化施工合同
- Unit 12 Weather(說課稿)-2024-2025學(xué)年滬教牛津版(深圳用)英語四年級上冊
- 門診手術(shù)策劃方案
- 出資比例 英語合同范例
- 云杉買賣合同范例
- 電動工具培訓(xùn)課件
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 視頻會議室改造方案
- 【中考真題】廣東省2024年中考語文真題試卷
- GB/T 32399-2024信息技術(shù)云計算參考架構(gòu)
- 2025年湖南省長沙市中考數(shù)學(xué)模擬試卷(附答案解析)
- 五級人工智能訓(xùn)練師(初級)職業(yè)技能等級認(rèn)定考試題庫(含答案)
- 2022年內(nèi)蒙古呼和浩特市中考化學(xué)真題(解析版)
- 血栓性微血管病的診治
- 綜合客運樞紐換乘區(qū)域設(shè)施設(shè)備配置要求JTT1066-2016
- 中國急性缺血性卒中診治指南(2023)解讀
評論
0/150
提交評論