版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆四川省德陽市重點中學數(shù)學高一上期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.關(guān)于,,下列敘述正確的是()A.若,則是的整數(shù)倍B.函數(shù)的圖象關(guān)于點對稱C.函數(shù)的圖象關(guān)于直線對稱D.函數(shù)在區(qū)間上為增函數(shù).2.已知某幾何體的三視圖如圖所示,則該幾何體的體積為A. B.C. D.3.已知函數(shù),,則函數(shù)的零點個數(shù)不可能是()A.2個 B.3個C.4個 D.5個4.一種藥在病人血液中量低于時病人就有危險,現(xiàn)給某病人的靜脈注射了這種藥,如果藥在血液中以每小時80%的比例衰減,那么應(yīng)再向病人的血液中補充這種藥不能超過的最長時間為()A.1.5小時 B.2小時C.2.5小時 D.3小時5.若某商店將進貨單價為6元的商品按每件10元出售,則每天可銷售100件.現(xiàn)準備采用提高售價、減少進貨量的方法來增加利潤.已知這種商品的售價每提高1元,銷售量就要減少10件,那么要保證該商品每天的利潤在450元以上,售價的取值范圍是()A. B.C. D.6.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.7.設(shè)函數(shù),若關(guān)于的方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.8.已知全集,集合,,它們的關(guān)系如圖(Venn圖)所示,則陰影部分表示的集合為()A. B.C. D.9.若將函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),再將所得圖象向左平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是()A.的最小正周期為 B.在區(qū)間上單調(diào)遞減C.圖象的一條對稱軸為直線 D.圖象的一個對稱中心為10.點到直線的距離等于()A. B.C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.大圓周長為的球的表面積為____________12.已知函數(shù)f(x)=1g(2x-1)的定義城為______13.在空間直角坐標系中,設(shè),,且中點為,是坐標原點,則__________14.已知函數(shù),若正實數(shù),滿足,則的最小值是____________15.下列命題中正確的是________(1)是的必要不充分條件(2)若函數(shù)的最小正周期為(3)函數(shù)的最小值為(4)已知函數(shù),在上單調(diào)遞增,則16.已知為三角形的邊的中點,點滿足,則實數(shù)的值為_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓的方程為,是坐標原點.直線與圓交于兩點(1)求的取值范圍;(2)過點作圓的切線,求切線所在直線的方程.18.我們知道:人們對聲音有不同感覺,這與它的強度有關(guān)系,聲音的強度用(單位:)表示,但在實際測量時,常用聲音的強度水平(單位:分貝)表示,它們滿足公式:(,其中()),是人們能聽到的最小強度,是聽覺的開始.請回答以下問題:(Ⅰ)樹葉沙沙聲的強度為(),耳語的強度為(),無線電廣播的強度為(),試分別求出它們的強度水平;(Ⅱ)某小區(qū)規(guī)定:小區(qū)內(nèi)公共場所的聲音的強度水平必須保持在分貝以下(不含分貝),試求聲音強度的取值范圍19.已知函數(shù),.(1)若關(guān)于的不等式的解集為,當時,求的最小值;(2)若對任意的、,不等式恒成立,求實數(shù)的取值范圍20.已知二次函數(shù)滿足,且的最小值是求的解析式;若關(guān)于x的方程在區(qū)間上有唯一實數(shù)根,求實數(shù)m的取值范圍;函數(shù),對任意,都有恒成立,求實數(shù)t的取值范圍21.設(shè)A是實數(shù)集的非空子集,稱集合且為集合A的生成集(1)當時,寫出集合A的生成集B;(2)若A是由5個正實數(shù)構(gòu)成的集合,求其生成集B中元素個數(shù)的最小值;(3)判斷是否存在4個正實數(shù)構(gòu)成的集合A,使其生成集,并說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題意利用余弦函數(shù)的圖象和性質(zhì),逐一判斷各個結(jié)論是否正確,從而得出結(jié)論.【詳解】對于A,的周期為,若,則是的整數(shù)倍,故A錯誤;對于B,當時,,則函數(shù)的圖象關(guān)于點中心對稱,B正確;對于C,當時,,不是函數(shù)最值,函數(shù)的圖象不關(guān)于直線對稱,C錯誤;對于D,,,則不單調(diào),D錯誤故選:B.2、D【解析】解:該幾何體是一個底面半徑為1、高為4的圓柱被一個平面分割成兩部分中的一個部分,故其體積為.本題選擇D選項.3、B【解析】由可得或,然后畫出的圖象,結(jié)合圖象可分析出答案.【詳解】由可得或的圖象如下:所以當時,,此時無零點,有2個零點,所以的零點個數(shù)為2;當時,,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當時,,此時有4個零點,有2個零點,所以的零點個數(shù)為6;當時,,此時有3個零點,有2個零點,所以的零點個數(shù)為5;當且時,此時有2個零點,有2個零點,所以的零點個數(shù)為4;當時,,此時的零點個數(shù)為2;當時,,此時有2個零點,有3個零點,所以的零點個數(shù)為5;當時,,此時有2個零點,有4個零點,所以的零點個數(shù)為6;當時,,此時有2個零點,有2個零點,所以零點個數(shù)為4;當時,,此時有2個零點,無零點,所以的零點個數(shù)為2;綜上:的零點個數(shù)可以為2、4、5、6,故選:B4、D【解析】設(shè)時間為,依題意有,解指數(shù)不等式即可;【詳解】解:設(shè)時間為,有,即,解得.故選:D5、B【解析】根據(jù)題意列出函數(shù)關(guān)系式,建立不等式求解即可.【詳解】設(shè)售價為,利潤為,則,由題意,即,解得,即售價應(yīng)定為元到元之間,故選:B.6、B【解析】因為cos=-,即cos=-,所以sin=-,則sin+cosA=sinAcos+cosAsin+cosA=sin=-.故選B.7、A【解析】根據(jù)圖象可得:,,,.,則.令,,求函數(shù)的值域,即可得出結(jié)果.【詳解】畫出函數(shù)的大致圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,,則.令,,而函數(shù)在單調(diào)遞增,所以,則.故選:A.【點睛】本題考查函數(shù)的圖象與性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.8、C【解析】根據(jù)所給關(guān)系圖(Venn圖),可知是求,由此可求得答案.【詳解】根據(jù)題意可知,陰影部分表示的是,故,故選:C.9、D【解析】根據(jù)題意函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),再將所得圖象向左平移個單位長度,得到函數(shù),即可求出最小正周期,把看成是整體,分別求的單調(diào)遞減區(qū)間、對稱軸、對稱中心,在分別驗證選項即可得到答案.【詳解】由于函數(shù)的圖象上所有點的橫坐標縮短為原來的一半(縱坐標不變),故函數(shù)的解析式為,再將所得圖象向左平移個單位長度,.,故A錯誤;的單調(diào)減區(qū)間為,故在區(qū)間內(nèi)不單調(diào)遞減;圖象的對稱軸為,不存在使得圖象的一條對稱軸為直線,故C錯誤;圖象的對稱中心的橫坐標為,當時,圖象的一個對稱中心為,故D正確.故選:D.10、C【解析】由點到直線的距離公式求解即可.【詳解】解:由點到直線的距離公式得,點到直線的距離等于.故選:C【點睛】本題考查了點到直線的距離公式,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】依題意可知,故求得表面積為.12、【解析】根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,求出解集即可.【詳解】∵f(x)=lg(2x﹣1),根據(jù)對數(shù)函數(shù)定義得2x﹣1>0,解得:x>0,故答案為(0,+∞).【點睛】考查具體函數(shù)的定義域的求解,考查了指數(shù)不等式的解法,屬于基礎(chǔ)題13、【解析】,故14、9【解析】根據(jù)指數(shù)的運算法則,可求得,根據(jù)基本不等式中“1”的代換,化簡計算,即可得答案.【詳解】由題意得,所以,所以,當且僅當,即時取等號,所以的最小值是9故答案為:915、(3)(4)【解析】對于(1)對角取特殊值即可驗證;對于(2)采用數(shù)形結(jié)合即可得到答案;對于(3)把函數(shù)進行化簡為關(guān)于的函數(shù),再利用基本不等式即可得到答案;對于(4)用整體的思想,求出單調(diào)增區(qū)間為,再讓即可得到答案.【詳解】對于(1),當,當,不滿足是的必要條件,故(1)錯誤;對于(2),函數(shù)的最小正周期為,故(2)錯誤;對于(3),,當且僅當?shù)忍柍闪?,故?)正確;對于(4)函數(shù)的單調(diào)增區(qū)間為,若在上單調(diào)遞增,則,又,故(4)正確.故答案為:(3)(4).16、【解析】根據(jù)向量減法的幾何意義及向量的數(shù)乘便可由得出,再由D為△ABC的邊BC的中點及向量加法的平行四邊形法則即可得出點D為AP的中點,從而便可得出,這樣便可得出λ的值【詳解】=,所以,D為△ABC的邊BC中點,∴∴如圖,D為AP的中點;∴,又,所以-2.故答案為-2.【點睛】本題考查向量減法的幾何意義,向量的數(shù)乘運算,及向量數(shù)乘的幾何意義,向量加法的平行四邊形法則,共線向量基本定理,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)直線與圓交于兩點,即直線與圓相交,轉(zhuǎn)化成圓心到直線距離小于半徑,利用公式解不等式;(2)過某點求圓的切線,分斜率存在和斜率不存在兩種情況數(shù)形結(jié)合分別討論.【詳解】(1)圓心到直線的距離,解得或即k的取值范圍為.(2)當過點P的直線斜率不存在時,即x=2與圓相切,符合題意.當過點P的直線斜率存在時,設(shè)其方程為即,由圓心(0,4)到直線的距離等于2,可得解得,故直線方程為綜上所述,圓的切線方程為或【點睛】此題考查直線和圓的位置關(guān)系,結(jié)合圓的幾何性質(zhì)處理相交相切,過某點的直線在設(shè)其方程的時候一定注意討論斜率是否存在,這是一個易錯點,對邏輯思維能力要求較高,當然也可以考慮直線與二次曲線的常規(guī)解法.18、(Ⅰ)0,20,40;(Ⅱ)大于或等于,同時應(yīng)小于.【解析】(Ⅰ)將樹葉沙沙聲的強度,耳語的強度,無線電廣播的強度,分別代入公式進行求解,即可求出所求;(Ⅱ)根據(jù)小區(qū)內(nèi)公共場所的聲音的強度水平必須保持在分貝以下建立不等式,然后解對數(shù)不等式即可求出所求.【詳解】(Ⅰ)由得樹葉沙沙聲強度(分貝)耳語的強度為(分貝),無線電廣播的強度為(分貝).(Ⅱ)由題意得:,即∴,∴∴聲音強度的范圍是大于或等于,同時應(yīng)小于【點睛】與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.19、(1)(2)【解析】(1)根據(jù)二次不等式的解集得,再根據(jù)基本不等式求解即可;(2)根據(jù)題意將問題轉(zhuǎn)化為在恒成立,再令,(),分類討論即可求解.【詳解】(1)由關(guān)于的不等式的解集為,所以知∴又∵,∴,取“”時∴即的最小值為,取“”時(2)∵時,,∴根據(jù)題意得:在恒成立記,()①當時,由,∴②當時,由,∴③當時,由,綜上所述,的取值范圍是【點睛】本題的第二問中關(guān)鍵是采用動軸定區(qū)間的方法進行求解,即討論對稱軸在定區(qū)間的左右兩側(cè)以及對稱軸在定區(qū)間上的變化情況,從而確定該函數(shù)的最值.20、(1)(2)(3)【解析】(1)因,故對稱軸為,故可設(shè),再由得.(2)有唯一實數(shù)根可以轉(zhuǎn)化為與有唯一的交點去考慮.(3),任意都有不等式成立等價于,分、、和四種情形討論即可.解析:(1)因,對稱軸為,設(shè),由得,所以.(2)由方程得,即直線與函數(shù)的圖象有且只有一個交點,作出函數(shù)在的圖象.易得當或時函數(shù)圖象與直線只有一個交點,所以的取值范圍是.(3)由題意知.假設(shè)存在實數(shù)滿足條件,對任意都有成立,即,故有,由.當時,在上為增函數(shù),,所以;當時,,.即,解得,所以.當時,即解得.所以.當時,,即,所以,綜上所述,,所以當時,使得對任意都有成立.點睛:(1)求二次函數(shù)的解析式,一般用待定系數(shù)法,有時也需要根據(jù)題設(shè)的特點合理假設(shè)二次函數(shù)的形式(如雙根式、頂點式、一般式);(2)不等式對任意的恒成立可以等價轉(zhuǎn)化為恒成立.21、(1)(2)7(3)不存在,理由見解析【解析】(1)利用集合的生成集定義直接求解.(2)設(shè),且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度臨時彩鋼活動房租賃合同范本3篇
- 2024碎磚再利用工程采購合同書3篇
- 2024消防無人機系統(tǒng)采購合同
- 2025年度鮮蛋養(yǎng)殖戶互助合作供銷合同范本(2025版)3篇
- 二零二五年度航空物流樞紐建設(shè)與運營合同3篇
- 2025年度項目部承包智慧社區(qū)建設(shè)項目合同2篇
- 2024版工程勞務(wù)分包合同參考范本
- 2025便利店品牌升級商品采購合作協(xié)議3篇
- 2024簡單的家政服務(wù)合同協(xié)議
- 2025年度私人住宅買賣合同(含社區(qū)服務(wù))3篇
- 2025年河北供水有限責任公司招聘筆試參考題庫含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 說課稿-2024-2025學年高中英語人教版(2019)必修第一冊
- 農(nóng)發(fā)行案防知識培訓課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- NB/T 11536-2024煤礦帶壓開采底板井下注漿加固改造技術(shù)規(guī)范
- 2024年九年級上德育工作總結(jié)
- 2024年儲罐呼吸閥項目可行性研究報告
- 除氧器出水溶解氧不合格的原因有哪些
- 沖擊式機組水輪機安裝概述與流程
- 新加坡SM2數(shù)學試題
- 畢業(yè)論文-水利水電工程質(zhì)量管理
評論
0/150
提交評論