版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
皖豫聯(lián)盟體2025屆高一上數(shù)學期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)在單調遞減,且為奇函數(shù).若,則滿足的的取值范圍是().A. B.C. D.2.以下命題(其中,表示直線,表示平面):①若,,則;②若,,則;③若,,則;④若,,則其中正確命題的個數(shù)是A.0個 B.1個C.2個 D.3個3.若在上單調遞減,則的取值范圍是().A. B.C. D.4.如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是()A.相交 B.平行C.異面 D.以上都有可能5.已知冪函數(shù)過點,則在其定義域內()A.為偶函數(shù) B.為奇函數(shù)C.有最大值 D.有最小值6.函數(shù)y=1g(1-x)+的定義域是()A. B.C. D.7.設,,,則的大小關系是()A B.C. D.8.直線與圓x2+y2=1在第一象限內有兩個不同的交點,則的取值范圍是()A. B.C. D.9.某幾何體的三視圖如圖所示(圖中小正方形網(wǎng)格的邊長為),則該幾何體的體積是A. B.C. D.10.設函數(shù)與的圖象的交點為,,則所在的區(qū)間是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)y=sinx的圖象上的所有點向右平移個單位長度,所得圖象的函數(shù)解析式為_________.12.已知圓錐的側面展開圖是一個半徑為2的半圓,則這個圓錐的高是_______13.已知函數(shù),,對,用表示,中的較大者,記為,則的最小值為______.14.若命題p是命題“”的充分不必要條件,則p可以是___________.(寫出滿足題意的一個即可)15.已知定義在上的函數(shù)滿足,且當時,.若對任意,恒成立,則實數(shù)的取值范圍是______16.高三年級的一次模擬考試中,經(jīng)統(tǒng)計某校重點班30名學生的數(shù)學成績均在[100,150](單位:分)內,根據(jù)統(tǒng)計的數(shù)據(jù)制作出頻率分布直方圖如右圖所示,則圖中的實數(shù)a=__________,若以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,估算該班的數(shù)學成績平均值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合M是滿足下列性質的函數(shù)的全體:在定義域D內存在,使得成立函數(shù)是否屬于集合M?說明理由;若函數(shù)屬于集合M,試求實數(shù)k和b滿足的約束條件;設函數(shù)屬于集合M,求實數(shù)a的取值范圍18.已知圓的方程為,是坐標原點.直線與圓交于兩點(1)求的取值范圍;(2)過點作圓的切線,求切線所在直線的方程.19.(1)已知是奇函數(shù),求的值;(2)畫出函數(shù)圖象,并利用圖象回答:為何值時,方程無解?有一解?有兩解.20.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分圖象如圖所示:(1)求函數(shù)解析式;(2)求函數(shù)的單調遞增區(qū)間.21.如圖所示,在四棱錐中,底面是矩形,側棱垂直于底面,分別是的中點.求證:(1)平面平面;(2)平面平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由已知中函數(shù)的單調性及奇偶性,可將不等式化為,解得答案【詳解】解:由函數(shù)為奇函數(shù),得,不等式即為,又單調遞減,所以得,即,故選:D.2、A【解析】利用線面平行和線線平行的性質和判定定理對四個命題分別分析進行選擇【詳解】①若a∥b,b?α,則a∥α或a?α,故錯;②若a∥α,b∥α,則a,b平行、相交或異面,故②錯;③若a∥b,b∥α,則a∥α或a?α,故③錯;④若a∥α,b?α,則a、b平行或異面,故④錯正確命題個數(shù)為0個,故選A.【點睛】本題考查空間兩直線的位置關系,直線與平面的位置關系,主要考查線面平行的判定和性質.3、B【解析】令f(x)=,由題意得f(x)在上單調遞增,且f(﹣1),由此能求出a的取值范圍【詳解】∵函數(shù)在上單調遞減,令f(x)=,∴f(x)=在上單調遞增,且f(﹣1)∴,解得a≤8故選B.【點睛】本題考查實數(shù)值的求法,注意函數(shù)的單調性的合理運用,屬于基礎題.4、B【解析】因為G1,G2分別是△SAB和△SAC的重心,所以,所以.又因為M、N分別為AB、AC的中點,所以MN//BC,所以考點:線面平行的判定定理;線面平行的性質定理;公理4;重心的性質點評:我們要掌握重心性質:若G1為△SAB的重心,M為AB中點,則5、A【解析】設冪函數(shù)為,代入點,得到,判斷函數(shù)的奇偶性和值域得到答案.【詳解】設冪函數(shù)為,代入點,即,定義域為,為偶函數(shù)且故選:【點睛】本題考查了冪函數(shù)的奇偶性和值域,意在考查學生對于函數(shù)性質的綜合應用.6、B【解析】可看出,要使得原函數(shù)有意義,則需滿足解出x的范圍即可【詳解】要使原函數(shù)有意義,則:解得-1≤x<1;∴原函數(shù)的定義域是[-1,1)故選B【點睛】本題主要考查函數(shù)定義域的概念及求法,考查對數(shù)函數(shù)的定義域和一元二次不等式的解法.意在考查學生對這些知識的理解掌握水平.7、C【解析】詳解】,即,選.8、D【解析】如圖所示:當直線過(1,0)時,將(1,0)代入直線方程得:m=;當直線與圓相切時,圓心到切線的距離d=r,即,解得:m=舍去負值.則直線與圓在第一象限內有兩個不同的交點時,m的范圍為.故選D9、A【解析】利用已知條件,畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的體積即可【詳解】由題意可知幾何體的直觀圖如圖:是直四棱柱,底面是直角梯形,上底為:1,下底為2,高為2,棱柱的高為2,幾何體的體積為:V6故選A【點睛】本題考查幾何體的直觀圖與三視圖的關系,考查空間想象能力以及計算能力10、A【解析】設,則,有零點的判斷定理可得函數(shù)的零點在區(qū)間內,即所在的區(qū)間是.選A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用相位變換直接求得.【詳解】按照相位變換,把函數(shù)y=sinx的圖象上的所有點向右平移個單位長度,得到.故答案為:.12、【解析】設圓錐的母線為,底面半徑為則因此圓錐的高是考點:圓錐的側面展開圖13、【解析】作出函數(shù)的圖象,結合圖象即可得的最小值.【詳解】如圖,在同一直角坐標系中分別作出函數(shù)和的圖象,因為對,,故函數(shù)的圖象如圖所示:由圖可知,當時,函數(shù)取得最小值.故答案為:.14、,(答案不唯一)【解析】由充分條件和必要條件的定義求解即可【詳解】因為當時,一定成立,而當時,可能,可能,所以是的充分不必要條件,故答案為:(答案不唯一)15、【解析】根據(jù)題意求出函數(shù)和圖像,畫出圖像根據(jù)圖像解題即可.【詳解】因為滿足,即;又由,可得,因為當時,所以當時,,所以,即;所以當時,,所以,即;根據(jù)解析式畫出函數(shù)部分圖像如下所示;因為對任意,恒成立,根據(jù)圖像當時,函數(shù)與圖像交于點,即的橫坐標即為的最大值才能符合題意,所以,解得,所以實數(shù)的取值范圍是:.故答案為:.16、①.0.005(或)②.126.5(或126.5分)【解析】根據(jù)頻率分布直方圖的性質得到參數(shù)值,進而求得平均值.詳解】由頻率分布直方圖可得:,∴;該班的數(shù)學成績平均值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)【解析】(1)由,得,即.此方程無實根,函數(shù)不屬于集合.(2)由,得解得為任意實數(shù);(3)由,得,即整理得,有解;解得綜上18、(1);(2)或【解析】(1)直線與圓交于兩點,即直線與圓相交,轉化成圓心到直線距離小于半徑,利用公式解不等式;(2)過某點求圓的切線,分斜率存在和斜率不存在兩種情況數(shù)形結合分別討論.【詳解】(1)圓心到直線的距離,解得或即k的取值范圍為.(2)當過點P的直線斜率不存在時,即x=2與圓相切,符合題意.當過點P的直線斜率存在時,設其方程為即,由圓心(0,4)到直線的距離等于2,可得解得,故直線方程為綜上所述,圓的切線方程為或【點睛】此題考查直線和圓的位置關系,結合圓的幾何性質處理相交相切,過某點的直線在設其方程的時候一定注意討論斜率是否存在,這是一個易錯點,對邏輯思維能力要求較高,當然也可以考慮直線與二次曲線的常規(guī)解法.19、(1);(2)時,無解;時,有兩個解;或時,有一個解.【解析】(1)由奇函數(shù)的定義,,代入即可得出結果.(2)畫出函數(shù)圖象,結合函數(shù)圖象可得出結果.【詳解】(1)為奇函數(shù),,所以(2)函數(shù)圖象如圖,可知時,無解;時,有兩個解;或時,有一個解【點睛】本題考查了奇函數(shù)的定義,考查了運算求解能力和畫圖能力,數(shù)形結合思想,屬于基礎題目.20、(1);(2).【解析】(1)根據(jù)最高點和最低點可求,結合周期可求,結合點的坐標可求,然后可得解析式;(2)根據(jù)解析式,利用整體代換的方法可求單調區(qū)間.【詳解】(1)由圖可得,所以;因為時,,所以,;所以.(2)令,,解得,即增區(qū)間為.【點睛】本題主要考查三角函數(shù)解析式的求解和單調區(qū)間的求解,單調區(qū)間一般利用整體代換的意識,側重考查數(shù)學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 債務糾紛合同(2篇)
- 公共事業(yè)資產(chǎn)管理合同
- 2025年無機械動力飛機項目發(fā)展計劃
- 《職場溝通》電子教案 項目九 商務談判溝通教案
- 門店租賃協(xié)議模板
- 福州汽車租賃合同
- 廠房租賃合同書范文
- 公寓別墅租賃服務合同
- 八年級語文上冊第一單元5國行公祭為佑世界和平教案新人教版1
- 八年級道德與法治上冊第三單元勇?lián)鐣熑蔚谄哒n積極奉獻社會第2框服務社會教案新人教版
- 2024北京市《安全員》C證考試題庫及參考答案一套
- 社區(qū)矯正專業(yè)人員的培訓
- 安全隱患規(guī)范依據(jù)查詢手冊22大類12萬字
- 律師生涯發(fā)展報告
- 一般工傷事故處理工作流程圖
- 臨床麻醉學試卷及答案
- 混合性焦慮和抑郁障礙的護理查房
- MOOC 發(fā)展心理學-北京大學 中國大學慕課答案
- 克羅恩病病例分享
- 《養(yǎng)老護理員》-課件:協(xié)助老年人轉換體位
- 山東省高中生物教學大綱
評論
0/150
提交評論