2025屆廣東省潮州市名校數學高三上期末檢測試題含解析_第1頁
2025屆廣東省潮州市名校數學高三上期末檢測試題含解析_第2頁
2025屆廣東省潮州市名校數學高三上期末檢測試題含解析_第3頁
2025屆廣東省潮州市名校數學高三上期末檢測試題含解析_第4頁
2025屆廣東省潮州市名校數學高三上期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省潮州市名校數學高三上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象大致為()A. B.C. D.2.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.63.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.4.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數記為.則的表達式為().A. B. C. D.5.從5名學生中選出4名分別參加數學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數為A.48 B.72 C.90 D.966.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內任取一點,則該點落在區(qū)域的概率為()A. B. C. D.7.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江?。瓸.與去年同期相比,2017年第一季度的GDP總量實現了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.8.設為的兩個零點,且的最小值為1,則()A. B. C. D.9.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.10.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③11.已知函數,若,則的值等于()A. B. C. D.12.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊分別是,若,,則____.14.若,則__________.15.已知數列的前項和為,且滿足,則______16.若向量與向量垂直,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知件次品和件正品混放在一起,現需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.18.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數,求的分布列與數學期望.19.(12分)在平面直角坐標系中,設,過點的直線與圓相切,且與拋物線相交于兩點.(1)當在區(qū)間上變動時,求中點的軌跡;(2)設拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.20.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.21.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.22.(10分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.2、C【解析】

根據列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數量積的運算,考查向量模的求法,屬于基礎題.3、D【解析】

先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.4、D【解析】

根據題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數目,進而計算可得答案.【詳解】解:根據題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數列遞推公式的應用,屬于中檔題.5、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數原理、排列數與組合數公式等知識,屬于基礎題.6、C【解析】

據題意可知,是與面積有關的幾何概率,要求落在區(qū)域內的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區(qū)域的面積.7、C【解析】

利用圖表中的數據進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.8、A【解析】

先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.9、B【解析】

根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.10、B【解析】

由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數形結合思想、化歸與轉化思想,屬于難題.11、B【解析】

由函數的奇偶性可得,【詳解】∵其中為奇函數,也為奇函數∴也為奇函數∴故選:B【點睛】函數奇偶性的運用即得結果,小記,定義域關于原點對稱時有:①奇函數±奇函數=奇函數;②奇函數×奇函數=偶函數;③奇函數÷奇函數=偶函數;④偶函數±偶函數=偶函數;⑤偶函數×偶函數=偶函數;⑥奇函數×偶函數=奇函數;⑦奇函數÷偶函數=奇函數12、B【解析】

根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,根據正弦定理“邊化角”,可得,根據余弦定理,結合已知聯立方程組,即可求得角.【詳解】根據正弦定理:可得根據余弦定理:由已知可得:故可聯立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.14、【解析】

因為,由二倍角公式得到,故得到.故答案為.15、【解析】

對題目所給等式進行賦值,由此求得的表達式,判斷出數列是等比數列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數列是首項為1,公比為的等比數列,可得.【點睛】本小題主要考查已知求,考查等比數列前項和公式,屬于中檔題.16、0【解析】

直接根據向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據向量垂直求參數,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機變量的可能取值有、、,計算出隨機變量在不同取值下的概率,由此可得出隨機變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查了隨機變量分布列,考查計算能力,屬于基礎題.18、(1)當或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】

(1)將有3個坑需要補種表示成n的函數,考查函數隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當時,;當時,;所以當或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數學期望.【點睛】本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.19、(1).(2)的周長為,時,的周長為【解析】

(1)設的方程為,根據題意由點到直線的距離公式可得,將直線方程與拋物線方程聯立可得,設?坐標分別是?,利用韋達定理以及中點坐標公式消參即可求解.(2)根據拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設的方程為于是聯立設?坐標分別是?則設的中點坐標為,則消去參數得:(2)設,,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【點睛】本題考查了動點的軌跡方程、直線與拋物線的位置關系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.20、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】

(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論