版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆上海市金陵中學(xué)高三數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.2.近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.3.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.4.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)5.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.6.拋物線的準(zhǔn)線方程是,則實數(shù)()A. B. C. D.7.定義域為R的偶函數(shù)滿足任意,有,且當(dāng)時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.8.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.39.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面10.已知向量,且,則等于()A.4 B.3 C.2 D.111.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是10312.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程是____________.14.在中,,是的角平分線,設(shè),則實數(shù)的取值范圍是__________.15.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____16.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當(dāng)時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.18.(12分)已知兩數(shù).(1)當(dāng)時,求函數(shù)的極值點;(2)當(dāng)時,若恒成立,求的最大值.19.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.20.(12分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.21.(12分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,,求四邊形面積的最大值.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.2、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.4、B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.5、D【解析】
根據(jù)復(fù)數(shù)運算,即可容易求得結(jié)果.【詳解】.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,屬基礎(chǔ)題.6、C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因為準(zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.7、B【解析】
由題意可得的周期為,當(dāng)時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時,,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c問題,屬于中檔題.8、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.9、B【解析】
本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.10、D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.11、D【解析】
計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.12、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.14、【解析】
設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算能力,屬于中檔題.15、【解析】
設(shè)是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結(jié)合幾何概型求得點取自三角形的概率.【詳解】設(shè)是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎(chǔ)題.16、6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當(dāng)時,,∴;當(dāng)時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點睛】本題考查通項求解問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當(dāng)時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當(dāng)時,,設(shè),,當(dāng)時,,則在上單調(diào)遞增,當(dāng)時,,則在上單調(diào)遞減,所以當(dāng)時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問題進(jìn)行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.18、(1)唯一的極大值點1,無極小值點.(2)1【解析】
(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點;(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時,無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【詳解】解:(1)定義域為,當(dāng)時,,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點,無極小值點.(2)當(dāng)時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導(dǎo)數(shù)求函數(shù)極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側(cè)的符號相反.不等式恒成立深深轉(zhuǎn)化為求函數(shù)的最值,這里分離參數(shù)法起關(guān)鍵作用.19、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【點睛】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貴州省安全員-C證(專職安全員)考試題庫
- 2025年甘肅建筑安全員C證考試題庫
- 珍愛生命-校園行為規(guī)范與安全教育班會課件
- 小學(xué)心理健康輔導(dǎo)家長會課件
- 《PMC作業(yè)指引》課件
- DB61T-稻麥(油)輪作主要病蟲害防控技術(shù)規(guī)范編制說明
- 培訓(xùn)課件-車輛消防安全知識培訓(xùn)
- 單位管理制度展示選集【人力資源管理】十篇
- 單位管理制度展示大全【員工管理】
- 【物理課件】速度改變快慢的描述課件
- 2024-2025學(xué)年上學(xué)期廣州初中英語九年級期末試卷
- 惠州學(xué)院《大學(xué)物理》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024消防安全警示教育(含近期事故案例)
- Starter Section 1 Meeting English 說課稿 -2024-2025學(xué)年北師大版(2024)初中英語七年級上冊
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- 2024年法律職業(yè)資格考試(試卷一)客觀題試卷及解答參考
- 食堂項目經(jīng)理培訓(xùn)
- 安全經(jīng)理述職報告
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)檢英語試題 附答案
- 建筑項目經(jīng)理招聘面試題與參考回答(某大型集團(tuán)公司)2024年
- 安保服務(wù)評分標(biāo)準(zhǔn)
評論
0/150
提交評論