下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
§4數(shù)學(xué)歸納法(二)一、基礎(chǔ)過關(guān)1.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=eq\f(n+3n+4,2)(n∈N*),驗證n=1時,左邊應(yīng)取的項是 ()A.1 B.1+2C.1+2+3 D.1+2+3+42.用數(shù)學(xué)歸納法證明“2n>n2+1對于n≥n0的自然數(shù)n都成立”時,第一步證明中的起始值n0應(yīng)取 ()A.2 B.3C.5 D.63.已知f(n)=1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,n)(n∈N*),證明不等式f(2n)>eq\f(n,2)時,f(2k+1)比f(2k)多的項數(shù)是()A.2k-1項 B.2k+1項C.2k項 D.以上都不對4.用數(shù)學(xué)歸納法證明不等式eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n)>eq\f(11,24)(n∈N*)的過程中,由n=k遞推到n=k+1時,下列說法正確的是 ()A.增加了一項eq\f(1,2k+1)B.增加了兩項eq\f(1,2k+1)和eq\f(1,2k+1)C.增加了B中的兩項,但又減少了一項eq\f(1,k+1)D.增加了A中的一項,但又減少了一項eq\f(1,k+1)5.已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=n2an(n∈N*).依次計算出S1,S2,S3,S4后,可猜想Sn的表達式為________________.二、能力提升6.用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設(shè)證n=k+1時的情況,只需展開 ()A.(k+3)3 B.(k+2)3C.(k+1)3 D.(k+1)3+(k+2)37.k(k≥3,k∈N*)棱柱有f(k)個對角面,則(k+1)棱柱的對角面?zhèn)€數(shù)f(k+1)為 ()A.f(k)+k-1 B.f(k)+k+1C.f(k)+k D.f(k)+k-28.對于不等式eq\r(n2+n)≤n+1(n∈N*),某學(xué)生的證明過程如下:①當n=1時,eq\r(12+1)≤1+1,不等式成立.②假設(shè)n=k(n∈N*)時,不等式成立,即eq\r(k2+k)≤k+1,則n=k+1時,eq\r(k+12+k+1)=eq\r(k2+3k+2)<eq\r(k2+3k+2+k+2)=eq\r(k+22)=(k+1)+1,所以當n=k+1時,不等式成立,上述證法 ()A.過程全部正確B.n=1驗證不正確C.歸納假設(shè)不正確D.從n=k到n=k+1的推理不正確9.用數(shù)學(xué)歸納法證明eq\f(1,22)+eq\f(1,32)+…+eq\f(1,n+12)>eq\f(1,2)-eq\f(1,n+2).假設(shè)n=k時,不等式成立.則當n=k+1時,應(yīng)推證的目標不等式是_______.10.證明:62n-1+1能被7整除(n∈N*).11.求證:eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,3n)>eq\f(5,6)(n≥2,n∈N*).12.已知數(shù)列{an}中,a1=-eq\f(2,3),其前n項和Sn滿足an=Sn+eq\f(1,Sn)+2(n≥2),計算S1,S2,S3,S4,猜想Sn的表達式,并用數(shù)學(xué)歸納法加以證明.三、探究與拓展13.試比較2n+2與n2的大小(n∈N*),并用數(shù)學(xué)歸納法證明你的結(jié)論.
答案1.D2.C3.C4.C5.Sn=eq\f(2n,n+1)6.A7.A8.D9.eq\f(1,22)+eq\f(1,32)+…+eq\f(1,k2)+eq\f(1,k+12)+eq\f(1,k+22)>eq\f(1,2)-eq\f(1,k+3)10.證明(1)當n=1時,62-1+1=7能被7整除.(2)假設(shè)當n=k(k∈N*)時,62k-1+1能被7整除.那么當n=k+1時,62(k+1)-1+1=62k-1+2+1=36(62k-1+1)-35.∵62k-1+1能被7整除,35也能被7整除,∴當n=k+1時,62(k+1)-1+1能被7整除.由(1),(2)知命題成立.11.證明(1)當n=2時,左邊=eq\f(1,3)+eq\f(1,4)+eq\f(1,5)+eq\f(1,6)>eq\f(5,6),不等式成立.(2)假設(shè)當n=k(k≥2,k∈N*)時命題成立,即eq\f(1,k+1)+eq\f(1,k+2)+…+eq\f(1,3k)>eq\f(5,6).則當n=k+1時,eq\f(1,k+1+1)+eq\f(1,k+1+2)+…+eq\f(1,3k)+eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+1)=eq\f(1,k+1)+eq\f(1,k+2)+…+eq\f(1,3k)+(eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+3)-eq\f(1,k+1))>eq\f(5,6)+(eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+3)-eq\f(1,k+1))>eq\f(5,6)+(3×eq\f(1,3k+3)-eq\f(1,k+1))=eq\f(5,6),所以當n=k+1時不等式也成立.由(1)和(2)可知,原不等式對一切n≥2,n∈N*均成立.12.解當n≥2時,an=Sn-Sn-1=Sn+eq\f(1,Sn)+2.∴Sn=-eq\f(1,Sn-1+2)(n≥2).則有:S1=a1=-eq\f(2,3),S2=-eq\f(1,S1+2)=-eq\f(3,4),S3=-eq\f(1,S2+2)=-eq\f(4,5),S4=-eq\f(1,S3+2)=-eq\f(5,6),由此猜想:Sn=-eq\f(n+1,n+2)(n∈N*).用數(shù)學(xué)歸納法證明:(1)當n=1時,S1=-eq\f(2,3)=a1,猜想成立.(2)假設(shè)n=k(k∈N*)時猜想成立,即Sk=-eq\f(k+1,k+2)成立,那么當n=k+1時,Sk+1=-eq\f(1,Sk+2)=-eq\f(1,-\f(k+1,k+2)+2)=-eq\f(k+2,k+3)=-eq\f(k+1+1,k+1+2).即n=k+1時猜想成立.由(1)(2)可知,對任意正整數(shù)n,猜想結(jié)論均成立.13.證明當n=1時,21+2=4>n2=1,當n=2時,22+2=6>n2=4,當n=3時,23+2=10>n2=9,當n=4時,24+2=18>n2=16,由此可以猜想,2n+2>n2(n∈N*)成立.下面用數(shù)學(xué)歸納法證明:(1)當n=1時,左邊=21+2=4,右邊=1,所以左邊>右邊,所以原不等式成立.當n=2時,左邊=22+2=6,右邊=22=4,所以左邊>右邊;當n=3時,左邊=23+2=10,右邊=32=9,所以左邊>右邊.(2)假設(shè)n=k(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度演員參與電視劇集合同
- 二零二五年度財務(wù)審核合同中的財務(wù)報告編制規(guī)范
- 2025年度浙江民營企業(yè)勞動合同模板
- 2025年度船舶租賃與海上風電項目合同
- 2025年度飯店與旅游紀念品產(chǎn)業(yè)股權(quán)合作合同
- 幼兒水粉基礎(chǔ)知識
- 建筑結(jié)構(gòu)質(zhì)量預(yù)防措施
- 心臟衰竭治療技術(shù)
- 2025旅游合作開發(fā)合同范本
- 少先隊員演講稿
- 商業(yè)計劃書(BP)財務(wù)計劃風險控制資本退出與附錄的撰寫秘籍
- 二級綜合醫(yī)院評審標準實施細則
- 新大《新疆地質(zhì)概論》教案第6章 礦產(chǎn)資源
- EGD殺生劑劑化學(xué)品安全技術(shù)說明(MSDS)zj
- GB/T 12229-2005通用閥門碳素鋼鑄件技術(shù)條件
- 超分子化學(xué)-第三章 陰離子的絡(luò)合主體
- 控制變量法教學(xué)課件
- 血壓計保養(yǎng)記錄表
- 食品的售后服務(wù)承諾書范本范文(通用3篇)
- 初中中考英語總復(fù)習(xí)《代詞動詞連詞數(shù)詞》思維導(dǎo)圖
- 植物和五行關(guān)系解說
評論
0/150
提交評論