2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆黃岡市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在空間直角坐標(biāo)系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球2.《九章算術(shù)》中,將四個(gè)面都為直角三角形的三棱錐稱為鱉臑(nào).如圖所示的三棱錐為一鱉臑,且平面,平面,若,,,則()A. B.C. D.3.過兩點(diǎn)、的直線的傾斜角為,則的值為()A.或 B.C. D.4.如圖,D是正方體的一個(gè)“直角尖”O(jiān)-ABC(OA,OB,OC兩兩垂直且相等)棱OB的中點(diǎn),P是BC中點(diǎn),Q是AD上的一個(gè)動(dòng)點(diǎn),連PQ,則當(dāng)AC與PQ所成角為最小時(shí),()A. B.C. D.25.已知拋物線內(nèi)一點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.6.若一個(gè)正方體的全面積是72,則它的對(duì)角線長為()A. B.12C. D.67.變量與的數(shù)據(jù)如表所示,其中缺少了一個(gè)數(shù)值,已知關(guān)于的線性回歸方程為,則缺少的數(shù)值為()22232425262324▲2628A.24 B.25C.25.5 D.268.函數(shù)的圖象大致為()A. B.C. D.9.如圖,是函數(shù)的部分圖象,且關(guān)于直線對(duì)稱,則()A. B.C. D.10.青少年視力被社會(huì)普遍關(guān)注,為了解他們的視力狀況,經(jīng)統(tǒng)計(jì)得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù).如果執(zhí)行如圖所示的算法程序,那么輸出的結(jié)果是()A. B.C. D.11.直線恒過定點(diǎn)()A. B.C. D.12.直線關(guān)于直線對(duì)稱的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將全體正整數(shù)排成一個(gè)三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個(gè)數(shù)為__________.14.已知橢圓:的右焦點(diǎn)為,且經(jīng)過點(diǎn)(1)求橢圓的方程以及離心率;(2)若直線與橢圓相切于點(diǎn),與直線相交于點(diǎn).在軸是否存在定點(diǎn),使?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由15.過拋物線:的焦點(diǎn)的直線交于,兩點(diǎn),若,則線段中點(diǎn)的橫坐標(biāo)為______16.已知空間向量,,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)圓的圓心為A,直線l過點(diǎn)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點(diǎn)E的軌跡方程;(2)過點(diǎn)作斜率為,的兩條直線,分別交點(diǎn)E的軌跡于M,N兩點(diǎn),且,證明:直線MN必過定點(diǎn)18.(12分)已知,(1)若,p且q為真命題,求實(shí)數(shù)x的取值范圍;(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍19.(12分)已知是函數(shù)的一個(gè)極值點(diǎn).(1)求實(shí)數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.20.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列的前項(xiàng)和.21.(12分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過的直線交與兩點(diǎn).(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.22.(10分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點(diǎn),過點(diǎn)的直線l與橢圓E交于A,B兩點(diǎn),判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】方程表示空間中的點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,所以方程所表示的圖形是以原點(diǎn)為球心,2為半徑的球,故選:D2、A【解析】根據(jù)平面,平面求解.【詳解】因?yàn)槠矫妫矫?,所以,又,,,所?所以,故選:A3、D【解析】利用斜率公式可得出關(guān)于實(shí)數(shù)的等式與不等式,由此可解得實(shí)數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.4、C【解析】根據(jù)題意,建立空間直角坐標(biāo)系,求得AC與PQ夾角的余弦值關(guān)于點(diǎn)坐標(biāo)的函數(shù)關(guān)系,求得角度最小時(shí)點(diǎn)的坐標(biāo),即可代值計(jì)算求解結(jié)果.【詳解】根據(jù)題意,兩兩垂直,故以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如下所示:設(shè),則,不妨設(shè)點(diǎn)的坐標(biāo)為,則,,則,又,設(shè)直線所成角為,則,則,令,令,則,令,則,此時(shí).故當(dāng)時(shí),取得最大值,此時(shí)最小,點(diǎn),則,故,則故選:C.5、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.6、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計(jì)算對(duì)角線.【詳解】設(shè)正方體的棱長為,對(duì)角線長為,則有,解得,從而,解得.故選:D7、A【解析】可設(shè)出缺少的數(shù)值,利用表中的數(shù)據(jù),分別表示出、,將樣本中心點(diǎn)帶入回歸方程,即可求得參數(shù).【詳解】設(shè)缺少的數(shù)值為,則,,因?yàn)榛貧w直線方程經(jīng)過樣本點(diǎn)的中心,所以,解得.故選:A8、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)9、C【解析】先根據(jù)條件確定為函數(shù)的極大值點(diǎn),得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負(fù)即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點(diǎn),所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因?yàn)楹瘮?shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.10、B【解析】依題意該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),結(jié)合莖葉圖判斷可得;【詳解】解:根據(jù)程序框圖可知,該程序框圖是統(tǒng)計(jì)這12名青少年視力小于等于的人數(shù),由莖葉圖可知視力小于等于的有5人,故選:B11、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過定點(diǎn)故選:A12、C【解析】先聯(lián)立方程得,再求得直線的點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過點(diǎn),,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點(diǎn)為設(shè)直線的點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的坐標(biāo)為,所以,解得所以直線關(guān)于直線對(duì)稱的直線過點(diǎn),所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C二、填空題:本題共4小題,每小題5分,共20分。13、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個(gè)數(shù),第行有個(gè)數(shù),并且數(shù)字從開始,每次遞增.前行共有個(gè)數(shù),第行從左向右的最后一個(gè)數(shù)是,所以第行從左向右的第個(gè)數(shù)為.故答案為:14、(1),;(2)存在定點(diǎn),為【解析】(1)利用,,求解方程(2)設(shè)直線方程為,與橢圓聯(lián)立利用判別式等于0得,并求得切點(diǎn)坐標(biāo)及,假設(shè)存在點(diǎn),利用化簡求值【詳解】(1)由已知得,,,,橢圓的方程為,離心率為;(2)在軸存在定點(diǎn),為使,證明:設(shè)直線方程為代入得,化簡得由,得,,設(shè),則,,則,設(shè),則,則假設(shè)存在點(diǎn)解得所以在軸存在定點(diǎn)使【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,考查切線的應(yīng)用,利用判別式等于0得坐標(biāo)是解決問題的關(guān)鍵,考查計(jì)算能力,是中檔題15、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點(diǎn)為,準(zhǔn)線為,分別過,作準(zhǔn)線的垂線,垂足為,,則有過的中點(diǎn)作準(zhǔn)線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標(biāo)為故答案為:16、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運(yùn)算,即可求解.【詳解】根據(jù)題意,易知,因?yàn)?,所以,即,解得故答案為?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點(diǎn)E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進(jìn)行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點(diǎn)的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因?yàn)?,故E的軌跡為以A,B為焦點(diǎn)的橢圓(不包括左右頂點(diǎn)),且有,,即,,,則點(diǎn)E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時(shí),設(shè)直線方程為,則,,,,則,∴,此時(shí)直線MN的方程為當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時(shí)直線MN:,恒過定點(diǎn)又直線MN斜率不存在時(shí),直線MN:也過,故直線MN過定點(diǎn).【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。18、(1);(2).【解析】(1)解一元二次不等式可得命題p,q所對(duì)集合,再求交集作答.(2)求出命題q所對(duì)集合,再利用集合的包含關(guān)系列式計(jì)算作答.【小問1詳解】解不等式得:,則命題p所對(duì)集合,當(dāng)時(shí),解不等式得:,則命題q所對(duì)集合,由p且q為真命題,則,所以實(shí)數(shù)x的取值范圍是.【小問2詳解】解不等式得:,則命題q所對(duì)集合,因p是q的充分條件,則,于是得,解得,所以實(shí)數(shù)m的取值范圍是.19、(1)3(2),【解析】(1)先求出函數(shù)的導(dǎo)數(shù),根據(jù)極值點(diǎn)可得導(dǎo)數(shù)的零點(diǎn),從而可求實(shí)數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個(gè)極值點(diǎn),.,,此時(shí),令,解劇或,令,解得,故為的極值點(diǎn),故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又20、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個(gè)量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.21、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達(dá)定理可得;(2)借助(1)中結(jié)論可得各點(diǎn)縱坐標(biāo)之積,進(jìn)而得到F、T、Q三點(diǎn)橫坐標(biāo)關(guān)系,然后可證.【小問1詳解】顯然過T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問2詳解】由(1)設(shè),因?yàn)锳P與BQ均過T(t,0)點(diǎn),可知,又AB過F點(diǎn),所以,如圖:,,設(shè)M(n,0),由(1)類比可得.,且,成等比數(shù)列.22、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計(jì)算作答.(2)當(dāng)直線l的斜率存在時(shí),設(shè)出直線l的方程,與橢圓E的方程聯(lián)立,利用韋達(dá)定理、向量數(shù)量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論