博雅聞道2025屆高一數(shù)學第一學期期末考試試題含解析_第1頁
博雅聞道2025屆高一數(shù)學第一學期期末考試試題含解析_第2頁
博雅聞道2025屆高一數(shù)學第一學期期末考試試題含解析_第3頁
博雅聞道2025屆高一數(shù)學第一學期期末考試試題含解析_第4頁
博雅聞道2025屆高一數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

博雅聞道2025屆高一數(shù)學第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)的定義域為,若存在,使得成立,則稱是函數(shù)的一個不動點,下列函數(shù)存在不動點的是()A. B.C. D.2.若,,則角的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限3.函數(shù)的零點所在的區(qū)間為()A.(,1) B.(1,2)C. D.4.定義在上的奇函數(shù),在上單調(diào)遞增,且,則滿足的的取值范圍是()A. B.C. D.5.已知函數(shù)為奇函數(shù),則()A.-1 B.0C.1 D.26.已知函數(shù),當時.方程表示的直線是()A. B.C. D.7.對于兩條不同的直線l1,l2,兩個不同的平面α,β,下列結(jié)論正確的A.若l1∥α,l2∥α,則l1∥l2 B.若l1∥α,l1∥β,則α∥βC若l1∥l2,l1∥α,則l2∥α D.若l1∥l2,l1⊥α,則l2⊥α8.如圖,正方形的邊長為1,它是水平放置的一個平面圖形的直觀圖,則原圖形的周長是()A. B.8C.6 D.9.已知扇形的半徑為,面積為,則這個扇形的圓心角的弧度數(shù)為()A. B.C. D.10.角的終邊落在A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.“”是“”的______條件(請從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選擇一個填)12.___________13.已知是定義在R上的奇函數(shù),當時,,則在R上的表達式是________14.已知圓心為(1,1),經(jīng)過點(4,5),則圓標準方程為_____________________.15.函數(shù)(且)的圖像恒過定點______.16.已知是第四象限角且,則______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;(3)將函數(shù)的圖象向右平移個單位后所得函數(shù)的圖象關(guān)于原點中心對稱,求的最小值18.已知.(1)若,求的值;(2)若,且,求的值.19.為了在冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層、某棟房屋要建造能使用20年的隔熱層,每厘米厚的隔熱層的建造成本是6萬元,該棟房屋每年的能源消耗費用C(萬元)與隔熱層厚度x(厘米)滿足關(guān)系式:,若無隔熱層,則每年能源消耗費用為5萬元.設(shè)為隔熱層建造費用與使用20年的能源消耗費用之和.(1)求和的表達式;(2)當隔熱層修建多少厘米厚時,總費用最小,并求出最小值.20.已知函數(shù),(1)若的值域為,求a的值(2)證明:對任意,總存在,使得成立21.如圖,已知圓的圓心在坐標原點,點是圓上的一點(Ⅰ)求圓的方程;(Ⅱ)若過點的動直線與圓相交于,兩點.在平面直角坐標系內(nèi),是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標;若不存在,請說明理由

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】把選項中不同的代入,去判斷方程是否有解,來驗證函數(shù)是否存在不動點即可.【詳解】選項A:若,則,即,方程無解.故函數(shù)不存在不動點;選項B:若,則,即,方程無解.故函數(shù)不存在不動點;選項C:若,則,即或,兩種情況均無解.故函數(shù)不存在不動點;選項D:若,則,即設(shè),則,則函數(shù)在上存在零點.即方程有解.函數(shù)存在不動點.故選:D2、B【解析】應用誘導公式可得,,進而判斷角的終邊所在象限.【詳解】由題設(shè),,,所以角的終邊在第二象限.故選:B3、D【解析】為定義域內(nèi)的單調(diào)遞增函數(shù),計算選項中各個變量的函數(shù)值,判斷在正負,即可求出零點所在區(qū)間.【詳解】解:在上為單調(diào)遞增函數(shù),又,所以的零點所在的區(qū)間為.故選:D.4、B【解析】由題意可得,,在遞增,分別討論,,,,,結(jié)合的單調(diào)性,可得的范圍【詳解】函數(shù)是定義在上的奇函數(shù),在區(qū)間上單調(diào)遞增,且(1),可得,,在遞增,若時,成立;若,則成立;若,即,可得(1),即有,可得;若,則,,可得,解得;若,則,,可得,解得綜上可得,的取值范圍是,,故選:B5、C【解析】利用函數(shù)是奇函數(shù)得到,然后利用方程求解,,則答案可求【詳解】解:函數(shù)為奇函數(shù),當時,,所以,所以,,故故選:C.6、C【解析】先利用對數(shù)函數(shù)的性質(zhì)得到所以,再利用直線的斜率和截距判斷.【詳解】因為時,,所以則直線的斜率為,在軸上的截距故選:C7、D【解析】詳解】A.若l1∥α,l2∥α,則兩條直線可以相交可以平行,故A選項不正確;B.若l1∥α,l1∥β,則α∥β,當兩條直線平行時,兩個平面可以是相交的,故B不正確;C.若l1∥l2,l1∥α,則l2∥α,有可能在平面內(nèi),故C不正確;D.若l1∥l2,l1⊥α,則l2⊥α,根據(jù)課本的判定定理得到是正確的.故答案為D.8、B【解析】根據(jù)斜二測畫法得出原圖形四邊形的性質(zhì),然后可計算周長【詳解】由題意,所以原平面圖形四邊形中,,,,所以,所以四邊形的周長為:故選:B9、A【解析】由扇形的面積公式即可求解.【詳解】解:設(shè)扇形圓心角的弧度數(shù)為,則扇形面積為,解得,因為,所以扇形的圓心角的弧度數(shù)為4.故選:A10、A【解析】根據(jù)角的定義判斷即可【詳解】,故為第一象限角,故選A【點睛】判斷角的象限,將大角轉(zhuǎn)化為一個周期內(nèi)的角即可二、填空題:本大題共6小題,每小題5分,共30分。11、必要不充分【解析】根據(jù)充分條件、必要條件的定義結(jié)合余弦函數(shù)的性質(zhì)可得答案.【詳解】當時,可得由,不能得到例如:取時,,也滿足所以由,可得成立,反之不成立“”是“”的必要不充分條件故答案為:必要不充分12、【解析】利用、兩角和的正弦展開式進行化簡可得答案.【詳解】故答案為:.13、【解析】根據(jù)奇函數(shù)定義求出時的解析式,再寫出上的解析式即可【詳解】時,,,所以故答案為:【點睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵14、【解析】設(shè)出圓的標準方程,代入點的坐標,求出半徑,求出圓的標準方程【詳解】設(shè)圓的標準方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標準方程,利用了待定系數(shù)法,關(guān)鍵是確定圓的半徑15、【解析】根據(jù)指數(shù)函數(shù)恒過定點的性質(zhì),令指數(shù)冪等于零即可.【詳解】由,.此時.故圖像恒過定點.故答案為:【點睛】本題主要考查指數(shù)函數(shù)恒過定點的性質(zhì),屬于簡單題.16、【解析】直接由平方關(guān)系求解即可.【詳解】由是第四象限角,可得.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)由余弦函數(shù)的單調(diào)性,解不等式,,即可求出;(2)利用函數(shù)的性質(zhì),結(jié)合在時的單調(diào)性與最值,可得實數(shù)的取值范圍;(3)先求出的解析式,然后利用圖象關(guān)于原點中心對稱,是奇函數(shù),可求出的最小值【詳解】(1)由余弦函數(shù)的單調(diào)性,解不等式,,得,所以函數(shù)的單調(diào)遞增區(qū)間為;(2)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,則,,,所以當時,函數(shù)與函數(shù)的圖象有兩個公共點,即當時,方程恰有兩個不同的實數(shù)根時(3)函數(shù)的圖象向右平移個單位,得到,則是奇函數(shù),則,即,,則因為,所以當時,.【點睛】本題綜合考查了三角函數(shù)的性質(zhì),及圖象的平移變換,屬于中檔題18、(1)(2)【解析】(1)利用誘導公式求出,由已知得出,再由齊次式即可求解.(2)由題意可得,,再由兩角和的正切公式即可求解.【小問1詳解】由已知,,得所以【小問2詳解】由,,可知,,∴.∵,∴.而,∴.∴,∴.19、(1),(2)隔熱層修建4厘米厚時,總費用達到最小值,最小值為64萬元【解析】(1)由已知,又不建隔熱層,每年能源消耗費用為5萬元.所以可得C(0)=5,由此可求,進而得到.由已知建造費用為6x,根據(jù)隔熱層建造費用與20年的能源消耗費用之和為f(x),可得f(x)的表達式(2)由(1)中所求的f(x)的表達式,利用基本不等式求出總費用f(x)的最小值【小問1詳解】因為,若無隔熱層,則每年能源消耗費用為5萬元,所以,故,因為為隔熱層建造費用與使用20年的能源消耗費用之和,所以.【小問2詳解】,當且僅當,即時,等號成立,即隔熱層修建4厘米厚時,總費用達到最小值,最小值為64萬元.20、(1)2(2)證明見解析【解析】(1)由題意,可得,從而即可求解;(2)利用對勾函數(shù)單調(diào)性求出在上的值域,再分三種情況討論二次函數(shù)在閉區(qū)間上的值域,然后證明的值域是值域的子集恒成立即可得證.【小問1詳解】解:因為的值域為,所以,解得【小問2詳解】證明:由題意,根據(jù)對勾函數(shù)的單調(diào)性可得在上單調(diào)遞增,所以設(shè)在上的值域為M,當,即時,在上單調(diào)遞增,因為,,所以;當,即時,在上單調(diào)遞減,因為,,所以;當,即時,,,所以;綜上,恒成立,即在上的值域是在上值域的子集恒成立,所以對任意總存在,使得成立.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)設(shè)圓的方程為,將代入,求得,從而可得結(jié)果;(Ⅱ)先設(shè),由可得,再證明對任意,滿足即可,,則利用韋達定理可得,,由角平分線定理可得結(jié)果.【詳解】(Ⅰ)設(shè)圓的方程為,將代入,求得,所以圓的方程為;(Ⅱ)先設(shè),,由由(舍去)再證明對任意,滿足即可,由,則則利用韋達定理可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論