




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳實驗學校2025屆高二數(shù)學第一學期期末聯(lián)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),若實數(shù)是函數(shù)的零點,且,則()A. B.C. D.無法確定2.若橢圓與直線交于兩點,過原點與線段AB中點的直線的斜率為,則A. B.C. D.23.方程表示的曲線為焦點在y軸上的橢圓,則k的取值范圍是()A. B.C.或 D.4.已知空間中三點,,,則下列結論中正確的有()A.平面ABC的一個法向量是 B.的一個單位向量的坐標是C. D.與是共線向量5.函數(shù)為的導函數(shù),令,則下列關系正確的是()A. B.C. D.6.當圓的圓心到直線的距離最大時,()A B.C. D.7.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.8.若是函數(shù)的一個極值點,則的極大值為()A. B.C. D.9.已知數(shù)列是公差為等差數(shù)列,,則()A.1 B.3C.6 D.910.不等式的解集為()A.或 B.C. D.11.橢圓以坐標軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標準方程為()A. B.C.或 D.或12.已知在空間直角坐標系(O為坐標原點)中,點關于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體的棱長為1,C、D分別是兩條棱的中點,A、B、M是頂點,那么點M到截面ABCD的距離是____________.14.已知數(shù)列的前的前n項和為,數(shù)列的的前n項和為,則滿足的最小n的值為______15.若等比數(shù)列滿足,則的前n項和____________16.雙曲線的離心率______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.18.(12分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數(shù)k的值.19.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)求的單調區(qū)間;20.(12分)已知等差數(shù)列各項均不為零,為其前項和,點在函數(shù)的圖像上.(1)求的通項公式;(2)若數(shù)列滿足,求的前項和;(3)若數(shù)列滿足,求的前項和的最大值、最小值.21.(12分)已知函數(shù),.(1)若函數(shù)與在x=1處的切線平行,求函數(shù)在處的切線方程;(2)當時,若恒成立,求實數(shù)a的取值范圍.22.(10分)已知為數(shù)列的前項和,且.(1)求的通項公式;(2)若,求的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用函數(shù)在遞減求解.【詳解】因為函數(shù)在遞減,又實數(shù)是函數(shù)的零點,即,又因為,所以,故選:A2、D【解析】細查題意,把代入橢圓方程,得,整理得出,設出點的坐標,由根與系數(shù)的關系可以推出線段的中點坐標,再由過原點與線段的中點的直線的斜率為,進而可推導出的值.【詳解】聯(lián)立橢圓方程與直線方程,可得,整理得,設,則,從而線段的中點的橫坐標為,縱坐標,因為過原點與線段中點的直線的斜率為,所以,所以,故選D.【點睛】該題是一道關于直線與橢圓的綜合性題目,涉及到的知識點有直線與橢圓相交時對應的解題策略,中點坐標公式,斜率坐標公式,屬于簡單題目.3、D【解析】根據(jù)曲線為焦點在y軸上的橢圓可得出答案.【詳解】因為方程表示的曲線為焦點在y軸上的橢圓,所以,解得.故選:D.4、A【解析】根據(jù)已知條件,結合空間中平面法向量的定義,向量模長的求解,以及共線定理,對每個選項進行逐一分析,即可判斷和選擇.【詳解】因為,,,故可得,因為,故,不平行,則D錯誤;對A:不妨記向量為,則,又,不平行,故向量是平面的法向量,則A正確;對B:因為向量的模長為,其不是單位向量,故B錯誤;對C:因為,故可得,故C錯誤;故選:A.5、B【解析】求導后,令,可求得,再利用導數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關鍵點點睛:比較大小的關鍵是知道的單調性,利用導數(shù)可得的單調性.6、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.7、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著車和車,同時進來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B8、D【解析】先對函數(shù)求導,由已知,先求出,再令,并判斷函數(shù)在其左右兩邊的單調性,從而確定極大值點,然后帶入原函數(shù)即可完成求解.【詳解】因為,,所以,所以,,令,解得或,所以當,,單調遞增;時,,單調遞減;當,,單調遞增,所以的極大值為故選:D9、D【解析】結合等差數(shù)列的通項公式求得.【詳解】設公差,.故選:D10、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A11、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當橢圓焦點在軸上時,,,橢圓方程為,故選:C.12、B【解析】根據(jù)點關于坐標軸對稱的性質,結合空間向量夾角公式進行求解即可.【詳解】因為點關于x軸的對稱點為,所以,設平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意建立空間直角坐標系,然后結合點面距離公式即可求得點M到截面ABCD的距離.【詳解】建立如圖所示的空間直角坐標系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),設(x,y,z)為平面ABCD的法向量,則,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距離d故答案為.【點睛】本題主要考查空間直角坐標系及其應用,點面距離的計算等知識,意在考查學生的轉化能力和計算求解能力.14、9【解析】由數(shù)列的前項和為,則當時,,所以,所以數(shù)列的前和為,當時,,當時,,所以滿足的最小的值為.點睛:本題主要考查了等差數(shù)列與等比數(shù)列的綜合應用問題,其中解答中涉及到數(shù)列的通項與的關系,推導數(shù)列的通項公式,以及等差、等比數(shù)列的前項和公式的應用,熟記等差、等比數(shù)列的通項公式和前項和公式是解答的關鍵,著重考查了學生的推理與運算能力.15、##【解析】由已知及等比數(shù)列的通項公式得到首項和公比,再利用前n項和公式計算即可.【詳解】設等比數(shù)列的公比為,由已知,得,解得,所以.故答案為:16、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.18、(1)(2)【解析】(1)由向量的坐標先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即19、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導后,令求得兩根,分別在、和三種情況下根據(jù)導函數(shù)的正負得到函數(shù)的單調區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當時,若和時,;若時,;的單調遞增區(qū)間為,;單調遞減區(qū)間為;②當時,在上恒成立,的單調遞增區(qū)間為,無單調遞減區(qū)間;③當時,若和時,;若時,;的單調遞增區(qū)間為,;單調遞減區(qū)間為;綜上所述:當時,的單調遞增區(qū)間為,;單調遞減區(qū)間為;當時,的單調遞增區(qū)間為,無單調遞減區(qū)間;當時,的單調遞增區(qū)間為,;單調遞減區(qū)間為.【點睛】本題考查利用導數(shù)的幾何意義求解曲線在某一點處的切線方程、利用導數(shù)討論含參數(shù)函數(shù)的單調區(qū)間的問題,屬于常考題型.20、(1)(2)(3)最大值為,最小值為【解析】(1)將點代入函數(shù)解析再結合前和即可求解;(2)運用錯位相減法或分組求和法都可以求解;(3)將數(shù)列的通項變形為,再求和,通過分類討論從單調性上分析求解即可.【小問1詳解】因為點在函數(shù)的圖像上,所以,又數(shù)列是等差數(shù)列,所以,即所以,;【小問2詳解】解法1:,==,解法2:,①,②①-②得,;【小問3詳解】記的前n項和為,則=,當n為奇數(shù)時隨著n的增大而減小,可得,當n為偶數(shù)時隨著n增大而增大,可得,所以的最大值為,最小值為.21、(1);(2).【解析】(1)求出函數(shù)的導數(shù),利用切線平行求出a,即可求出切線方程;(2)先把已知條件轉化為,令,,利用導數(shù)求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】(1),故,而,故,故,解得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1185-2019特種設備雙重預防體系要求
- DB31/T 1048-2017上海品質評價通用要求
- DB31/T 1022-2016乘用車空氣凈化器凈化性能測定方法
- CAB 1011-2012汽車地毯的技術要求
- 貴金屬壓延加工中的生產(chǎn)數(shù)據(jù)分析考核試卷
- 2024年麻疹、風疹、腮腺炎聯(lián)合疫苗項目投資申請報告代可行性研究報告
- 2024年新戊二醇項目投資申請報告代可行性研究報告
- 校長在成人禮上精彩講話以不懈的學習、堅定的意志、偉大的擔當迎接高考贏得未來書寫人生的美好篇章
- 2025年中國芐基甲苯行業(yè)市場前景預測及投資價值評估分析報告
- 林地苗木培育委托經(jīng)營管理全面合作協(xié)議書
- 商超便利店行業(yè)分析報告
- 導游講解員暨景區(qū)(點)講解員大賽評分表
- 供應商審核檢查表(鑄造類專用)
- 高級護理實踐智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學
- 2價HPV疫苗接種知情同意書
- 2023-2024學年寶雞市數(shù)學六年級第一學期期末統(tǒng)考試題含答案
- EXCEL-化學錨栓計算書
- 管道酸洗鈍化記錄
- 智能制造技術創(chuàng)新服務平臺建設方案
- 師德師風負面清單及整改臺賬
- 門式移動腳手架搭拆方案
評論
0/150
提交評論