山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山西省長治市潞州區(qū)長治市第二中學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),,,…,,,則()A. B.C. D.2.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等3.圓截直線所得弦的最短長度為()A.2 B.C. D.44.將6位志愿者分成4組,其中兩個(gè)組各2人,另兩個(gè)組各1人,分赴廣交會的四個(gè)不同地方服務(wù),不同的分配方案有()種A.· B.·C. D.5.在平面上有一系列點(diǎn),對每個(gè)正整數(shù),點(diǎn)位于函數(shù)的圖象上,以點(diǎn)為圓心的與軸都相切,且與彼此外切.若,且,,的前項(xiàng)之和為,則()A. B.C. D.6.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.7.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離8.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.9.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.911.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x12.已知過拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.同時(shí)擲兩枚骰子,則點(diǎn)數(shù)和為7的概率是__________.14.正四棱柱中,,,點(diǎn)為底面四邊形的中心,點(diǎn)在側(cè)面四邊形的邊界及其內(nèi)部運(yùn)動,若,則線段長度的最大值為__________15.為增強(qiáng)廣大師生生態(tài)文明意識,大力推進(jìn)國家森林城市建設(shè)創(chuàng)建進(jìn)程,某班26名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學(xué)們挖坑期間,運(yùn)到的樹苗集中放置在了某一樹坑旁邊,然后每位同學(xué)挖好自己的樹坑后,均從各自樹坑出發(fā)去領(lǐng)取樹苗.記26位同學(xué)領(lǐng)取樹苗往返所走的路程總和為,則的最小值為______米16.執(zhí)行如圖所示的程序框圖,則輸出的n的值為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍.18.(12分)如圖,四棱錐中,底面為梯形,底面,,,,.(1)求證:平面平面;(2)設(shè)為上一點(diǎn),滿足,若直線與平面所成的角為,求二面角的余弦值.19.(12分)撫州市為了了解學(xué)生的體能情況,從全市所有高一學(xué)生中按80:1的比例隨機(jī)抽取200人進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計(jì)全市高一學(xué)生的優(yōu)秀率是多少?全市優(yōu)秀學(xué)生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補(bǔ)齊頻率分布直方圖;(3)估計(jì)該全市高一學(xué)生跳繩次數(shù)的中位數(shù)和平均數(shù)?20.(12分)已知數(shù)列和中,,且,.(1)寫出,,,,猜想數(shù)列和的通項(xiàng)公式并證明;(2)若對于任意都有,求的取值范圍.21.(12分)已知點(diǎn),,設(shè)動點(diǎn)P滿足直線PA與PB的斜率之積為,記動點(diǎn)P的軌跡為曲線E(1)求曲線E的方程;(2)若動直線l經(jīng)過點(diǎn),且與曲線E交于C,D(不同于A,B)兩點(diǎn),問:直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請說明理由22.(10分)已知(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知鈍角內(nèi)角A,B,C的對邊長分別a,b,c,若,,.求a的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B2、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點(diǎn)在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點(diǎn)在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項(xiàng),則正確故選:【點(diǎn)睛】本題考查橢圓的方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題3、A【解析】由題知直線過定點(diǎn),且在圓內(nèi),進(jìn)而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點(diǎn)將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點(diǎn)在圓內(nèi),所以點(diǎn)與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A4、B【解析】先按要求分為四組,再四個(gè)不同地方,四個(gè)組進(jìn)行全排列.【詳解】兩個(gè)組各2人,兩個(gè)組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個(gè)不同地方服務(wù),則不同的分配方案有種.故選:B5、C【解析】根據(jù)兩圓的幾何關(guān)系及其圓心在函數(shù)的圖象上,即可得到遞推關(guān)系式,通過構(gòu)造等差數(shù)列求得的通項(xiàng)公式,得出,最后利用裂項(xiàng)相消,求出數(shù)列前項(xiàng)和,即可求出.詳解】由與彼此外切,則,,,又∵,∴,故為等差數(shù)列且,,則,,則,即,故答案選:.6、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】7、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C8、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因?yàn)椋运?,,解得,所以不等式的解集為故選:C.9、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.10、A【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.11、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.12、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用古典概型的概率計(jì)算公式即得.【詳解】依題意,記拋擲兩顆骰子向上的點(diǎn)數(shù)分別為,,則可得到數(shù)組共有組,其中滿足的組數(shù)共有6組,分別為,,,,,,因此所求的概率等于.故答案為:.14、【解析】根據(jù)正四棱柱的性質(zhì)、矩形的性質(zhì),線面垂直的判定定理,結(jié)合勾股定理進(jìn)行求解即可.【詳解】當(dāng)位于點(diǎn)時(shí),因?yàn)槭钦叫危?,由正四棱柱的性質(zhì)可知,平面,因?yàn)槠矫妫?,因?yàn)槠矫妫云矫?,平面,所以,因此?dāng)位于點(diǎn)時(shí),滿足題意,當(dāng)點(diǎn)位于邊點(diǎn)時(shí),若,在矩形中,,因?yàn)?,所以,因此,所以有,此時(shí),又平面,所以平面,故點(diǎn)的軌跡在線段上,,所以線段長度的最大值為.故答案為:關(guān)鍵點(diǎn)睛:利用特殊點(diǎn)判斷出點(diǎn)的軌跡是解題的關(guān)鍵.15、【解析】根據(jù)對稱性易知:當(dāng)樹苗放在第13或14個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,再應(yīng)用等差數(shù)列前n項(xiàng)和的求法求26位同學(xué)領(lǐng)取樹苗往返所走的路程總和.【詳解】將26個(gè)同學(xué)對應(yīng)的26個(gè)坑分左右各13個(gè)坑,∴根據(jù)對稱性:樹苗放在左邊13個(gè)坑,與放在對稱右邊的13個(gè)坑,26個(gè)同學(xué)所走的總路程對應(yīng)相等,∴當(dāng)樹苗放在第13個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,此時(shí),左邊13位同學(xué)所走的路程分別為,右邊13位同學(xué)所走的路程分別為,∴最小值為米.故答案為:.16、5【解析】明確程序運(yùn)行的順序,寫出每次循環(huán)的m,n的值,直到判斷符合條件時(shí)結(jié)束,即可得到結(jié)果.【詳解】第一次循環(huán),m=3,n=2;第二次循環(huán),m=6,n=3;第三次循環(huán),m=9,n=4;第四次循環(huán),m=12,n=5,此時(shí)m+n>15,跳出循環(huán),故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)【解析】(1)研究當(dāng)時(shí)的導(dǎo)數(shù)的符號即可討論得到的單調(diào)性;(2)對原函數(shù)求導(dǎo),對a的范圍分類討論即可得出答案.【小問1詳解】當(dāng)時(shí),,令,則,所以在上單調(diào)遞增.又因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,且.①當(dāng)時(shí),由(1)可知當(dāng)時(shí),所以在上單調(diào)遞增,則,符合題意.②當(dāng)時(shí),,不符合題意,舍去.③當(dāng)時(shí),令,則,則,,當(dāng)時(shí),,所以在上單調(diào)遞減,當(dāng)時(shí),,不符合題意,舍去.綜上,a的取值范圍為.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識點(diǎn),對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用18、(1)證明見解析;(2).【解析】(1)由三角形的邊角關(guān)系可證,再由底面,可得.即可證明底面,由面面垂直的判定定理得證.(2)以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間坐標(biāo)系,利用空間向量法求出二面角的余弦值.【詳解】解析:(1)證明:由,,,,,所以,又,∴,∴,∴,因?yàn)榈酌妫酌?,?因?yàn)?,底面,底面,底面,底面,所以面?(2)由(1)可知為與平面所成的角,∴,∴,,由及,可得,,以點(diǎn)為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間坐標(biāo)系,則,,,,設(shè)平面的法向量為,則,,取,設(shè)平面的法向量為,則,,取,所以,所以二面角余弦值為.【點(diǎn)睛】本題考查面面垂直的判定,線面垂直的性質(zhì),利用空間向量法求二面角的余弦值,屬于中檔題.19、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計(jì)算出抽取的人員中優(yōu)秀學(xué)生數(shù)后可得全體優(yōu)秀學(xué)生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補(bǔ)齊頻率分布直方圖;(3)在頻率分布直方圖中計(jì)算出頻率對應(yīng)的值即為中位數(shù),用各組數(shù)據(jù)中點(diǎn)值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分?jǐn)?shù)在120分以上的頻率為,因此優(yōu)秀學(xué)生有(人);(2)設(shè)第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設(shè)中位數(shù)為,則,均值為20、(1),,,證明見解析(2)【解析】(1)已知兩式相加化簡可得是首項(xiàng)為2,公比為2的等比數(shù)列,則,兩式相減化簡可得是首項(xiàng)為2,公差為2的等差數(shù)列,則,(2)由題意可得只需要,令,由和解不等式可求出的最小值,從而可求得的取值范圍【小問1詳解】由已知得,猜想,,由題得,所以易知,即所以是首項(xiàng)為2,公比為2的等比數(shù)列,故,由題得,所以,即,所以是首項(xiàng)為2,公差為2的等差數(shù)列,所以.【小問2詳解】因?yàn)槿我舛加?,即,只需要,記,易知,故,?dāng)時(shí),,解得或,當(dāng)時(shí),,解得,因?yàn)?,所以,所以,所以的取值范圍?21、(1);(2)直線AC和BD的斜率之比為定值【解析】(1)設(shè),依據(jù)兩點(diǎn)的斜率公式可求得曲線E的方程(2)設(shè)直線l:,,,聯(lián)立方程得,得出根與系數(shù)的關(guān)系,表示直線AC的斜率,直線BD的斜率,并代入計(jì)算,可得其定值.【詳解】解:(1)設(shè),依題意可得,所以,所以曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論