版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江省綏濱縣第一中學(xué)2025屆數(shù)學(xué)高二上期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知不等式只有一個整數(shù)解,則m的取值范圍是()A. B.C. D.2.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.3.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)f(x)的導(dǎo)函數(shù),若,對,且.總有,則下列選項正確的是()A. B.C. D.4.為了了解某地區(qū)的名學(xué)生的數(shù)學(xué)成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.5.已知全集,,()A. B.C. D.6.2013年9月7日,總書記在哈薩克斯坦納扎爾巴耶夫大學(xué)發(fā)表演講在談到環(huán)境保護(hù)問題時提出“綠水青山就是金山銀山”這一科學(xué)論新.某市為了改善當(dāng)?shù)厣鷳B(tài)環(huán)境,2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,從2021年開始每年投入資金比上一年增加10%,到2025屆底該市生態(tài)環(huán)境建設(shè)投資總額大約為()(其中,,)A.2559萬元 B.2969萬元C.3005萬元 D.3040萬元7.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠18.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.9.考試停課復(fù)習(xí)期間,小王同學(xué)計劃將一天中的7節(jié)課全部用來復(fù)習(xí)4門不同的考試科目,每門科目復(fù)習(xí)1或2節(jié)課,則不同的復(fù)習(xí)安排方法有()種A.360 B.630C.2520 D.1512010.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學(xué)、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機(jī)選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.11.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.12.在等差數(shù)列中,,,則數(shù)列的公差為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.14.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數(shù)列中,,,,…,.則的橫坐標(biāo)為__________15.已知數(shù)列滿足,則=________.16.已知空間向量,,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求數(shù)列的前項和.18.(12分)在中,,,請再從條件①、條件②這兩個條件中選擇一個作為已知,然后解答下列問題.(1)求角的大??;(2)求的面積.條件①:;條件②:.19.(12分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,若問題中的存在,求實數(shù)的取值范圍;若問題中的不存在,請說明理由設(shè)等差數(shù)列的前n項和為,數(shù)列的前n項和為,___________,,,是否存在實數(shù),對任意都有?20.(12分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角21.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標(biāo)原點,且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標(biāo)22.(10分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個整數(shù)解,可化為只有一個整數(shù)解令,則當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,則當(dāng)時,取最大值,當(dāng)時,恒成立,的草圖如下:,,則若只有一個整數(shù)解,則,即故不等式只有一個整數(shù)解,則m的取值范圍是故選:B2、D【解析】設(shè)AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.3、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C4、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.5、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C6、B【解析】前7年投入資金可看成首項為160,公差為20的等差數(shù)列,后4年投入資金可看成首項為260,公比為1.1的等比數(shù)列,分別求和,即可求出所求【詳解】2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,成等差數(shù)列,則2020年投入資金萬元,年共7年投資總額為,從2021年開始每年投入資金比上一年增加,則從2021年到2025屆投入資金成首項為,公比為1.1,項數(shù)為4的等比數(shù)列,故從2021年到2025屆投入總資金為,故到2025屆底該市生態(tài)環(huán)境建設(shè)投資總額大約為萬元故選:7、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當(dāng)時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當(dāng)時,,,所以,即-,當(dāng)時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D8、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點E,F(xiàn)坐標(biāo),再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時取“=”,所以線段EF長的最小值為.故選:B9、C【解析】,先安排復(fù)習(xí)節(jié)的科目,然后安排其余科目,由此計算出不同的復(fù)習(xí)安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復(fù)習(xí)安排方法有種.故選:C10、A【解析】先由列舉法計算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個數(shù),基本事件個數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機(jī)選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.11、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C12、B【解析】將已知條件轉(zhuǎn)化為的形式,由此求得.【詳解】在等差數(shù)列中,設(shè)公差為d,由,,得,解得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點:棱柱、棱錐、棱臺的體積14、【解析】利用在拋物線上可求得,結(jié)合等比數(shù)列的公比可求得,利用拋物線的焦半徑公式即可求得結(jié)果.【詳解】在拋物線上,,解得:,拋物線;數(shù)列為等比數(shù)列,又,,公比,,即,解得:,即的橫坐標(biāo)為.故答案為:.15、4【解析】根據(jù)對數(shù)的運算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項公式化簡可得值.【詳解】因為,所以,即數(shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點睛】本題考查等比數(shù)列的定義和通項公式以及對數(shù)的運算性質(zhì),熟練運用相應(yīng)的公式即可,屬于基礎(chǔ)題.16、7【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯位相減求和法求得.【小問1詳解】.又?jǐn)?shù)列是以1為首項,4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項公式為,則,①,②,①-②得:,,,,.18、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.19、答案見解析【解析】由已知條件可得,假設(shè)時,取最小值,則,若補(bǔ)充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補(bǔ)充條件是②,則可得,該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,若補(bǔ)充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數(shù)列的公差為d,當(dāng)時,,得,從而,當(dāng)時,得,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,由對任意,都有,當(dāng)?shù)炔顢?shù)列的前n項和存在最小值時,假設(shè)時,取最小值,所以;若補(bǔ)充條件是①,因為,,從而,由得,所以,由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以,故實數(shù)的取值范圍為若補(bǔ)充條件是②,由,即,又,所以.所以,由于該數(shù)列是遞減數(shù)列,所以不存在k,使得取最小值,故實數(shù)不存在以下為嚴(yán)格的證明:由等差數(shù)列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數(shù)不存在若補(bǔ)充條件是③,由,得,又,所以,所以由等差數(shù)列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數(shù)的取值范圍為20、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質(zhì),可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標(biāo),進(jìn)而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標(biāo),根據(jù)線線角的向量求法,即可得答案.【小問1詳解】連接,交于O,連接OD,則O為的中點,在中,因為O、D分別為、BC中點,所以,又因為平面,平面,所以平面【小問2詳解】由題意得,兩兩垂直,以B為原點,為x,y,z軸正方向建系,如圖所示:設(shè),則,所以,則,,因為平面在平面ABC內(nèi),且平面ABC,所以即為平面的一個法向量,設(shè)平面的一個法向量為,則,所以,令,則,所以法向量,所以,由圖象可得平面與平面的夾角為銳角,所以平面與平面的夾角的余弦值為【小問3詳解】由(2)可得,設(shè)與所成的角為,則,解得,所以與所成的角為21、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡即可求得點坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025企業(yè)管理資料范本附件應(yīng)屆畢業(yè)生聘用合同
- 2025年出口合同范本
- 2025國有土地使用權(quán)出讓合同(宗地)
- 挖掘少數(shù)民族醫(yī)藥資源促進(jìn)健康產(chǎn)業(yè)發(fā)展
- 課題申報參考:空間視角下當(dāng)代德國的家國反思及啟示
- 安全知識普及類APP的內(nèi)容策劃與制作研究
- 激發(fā)員工創(chuàng)造力提升企業(yè)競爭力
- 智慧辦公在農(nóng)業(yè)科技園區(qū)的應(yīng)用及趨勢
- 2025年人教五四新版九年級科學(xué)下冊月考試卷含答案
- 2024 四川公務(wù)員考試行測真題(綜合管理崗)
- 四川省成都市武侯區(qū)2023-2024學(xué)年九年級上學(xué)期期末考試化學(xué)試題
- 2024年秋季人教版七年級上冊生物全冊教學(xué)課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學(xué)及消毒滅菌效果監(jiān)測
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質(zhì)指標(biāo)及分析方法
- 【S洲際酒店婚禮策劃方案設(shè)計6800字(論文)】
- 鐵路項目征地拆遷工作體會課件
- 醫(yī)院死亡報告年終分析報告
- 中國教育史(第四版)全套教學(xué)課件
- 2023年11月英語二級筆譯真題及答案(筆譯實務(wù))
- 上海民辦楊浦實驗學(xué)校初一新生分班(摸底)語文考試模擬試卷(10套試卷帶答案解析)
評論
0/150
提交評論