版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市綦江區(qū)南州中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.2.直線恒過(guò)定點(diǎn)()A. B.C. D.3.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為()A. B.C. D.4.若,則()A. B.C. D.5.用數(shù)學(xué)歸納法證明“”的過(guò)程中,從到時(shí),不等式的左邊增加了()A. B.C. D.6.已知圓,直線,則直線l被圓C所截得的弦長(zhǎng)的最小值為()A.2 B.3C.4 D.57.橢圓C:的焦點(diǎn)為,,點(diǎn)P在橢圓上,若,則的面積為()A.48 B.40C.28 D.248.如圖所示,已知三棱錐,點(diǎn),分別為,的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.9.函數(shù)的值域?yàn)椋ǎ〢. B.C. D.10.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.11.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.12.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點(diǎn)圖 B.條形圖C.莖葉圖 D.扇形圖二、填空題:本題共4小題,每小題5分,共20分。13.若直線的方向向量為,平面的一個(gè)法向量為,則直線與平面所成角的正弦值為______.14.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實(shí)數(shù)m的值為________.15.已知橢圓的離心率為.(1)證明:;(2)若點(diǎn)在橢圓的內(nèi)部,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),為線段的中點(diǎn),且.①求直線的方程;②求橢圓的標(biāo)準(zhǔn)方程.16.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)長(zhǎng)方體中,,點(diǎn)分別在上,且.(1)求證:平面;(2)求平面與平面所成角的余弦值.18.(12分)△的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知(1)求角B的大?。唬?)若△不為鈍角三角形,且,,求△的面積19.(12分)在平面直角坐標(biāo)系xOy中,已知點(diǎn)、,點(diǎn)M滿足,記點(diǎn)M的軌跡為C(1)求C的方程;(2)若直線l過(guò)圓圓心D且與圓交于A,B兩點(diǎn),點(diǎn)P為C上一個(gè)動(dòng)點(diǎn),求的最小值20.(12分)如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:平面.21.(12分)已知橢圓C與橢圓有相同的焦點(diǎn),且長(zhǎng)軸長(zhǎng)為4(1)求C的標(biāo)準(zhǔn)方程;(2)直線,分別經(jīng)過(guò)點(diǎn)與C相切,切點(diǎn)分別為A,B,證明:22.(10分)為了了解高一年級(jí)學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形面積之比為2∶4∶17∶15∶9∶3,第二小組的頻數(shù)為12(1)第二小組的頻率是多少?樣本量是多少?(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),則該校全體高一年級(jí)學(xué)生的達(dá)標(biāo)率是多少?(3)樣本中不達(dá)標(biāo)的學(xué)生人數(shù)是多少?(4)第三組的頻數(shù)是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.2、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過(guò)定點(diǎn)故選:A3、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負(fù),,可化為:或,解得或故選:A4、D【解析】設(shè),計(jì)算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.5、B【解析】依題意,由遞推到時(shí),不等式左邊為,與時(shí)不等式的左邊作差比較即可得到答案【詳解】用數(shù)學(xué)歸納法證明等式的過(guò)程中,假設(shè)時(shí)不等式成立,左邊,則當(dāng)時(shí),左邊,∴從到時(shí),不等式的左邊增加了故選:B6、C【解析】直線l過(guò)定點(diǎn)D(1,1),當(dāng)時(shí),弦長(zhǎng)最短.【詳解】由,圓心,半徑,,由,故直線l過(guò)定點(diǎn),∵,故D在圓C內(nèi)部,直線l始終與圓相交,當(dāng)時(shí),直線l被圓截得的弦長(zhǎng)最短,,弦長(zhǎng)=.故選:C.7、D【解析】根據(jù)給定條件結(jié)合橢圓定義求出,再判斷形狀計(jì)算作答.【詳解】橢圓C:的半焦距,長(zhǎng)半軸長(zhǎng),由橢圓定義得,而,且,則有是直角三角形,,所以的面積為24.故選:D8、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因?yàn)闉榈闹悬c(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),所以,所以,故選:A.9、C【解析】根據(jù)基本不等式即可求出【詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以函數(shù)的值域?yàn)楣蔬x:C10、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項(xiàng)中命題的真假.【詳解】對(duì)于命題,由于函數(shù)為上的增函數(shù),當(dāng)時(shí),,命題為真命題;對(duì)于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.11、D【解析】根據(jù)拋物線的定義得出當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),|PF|取最小值.【詳解】根據(jù)題意,設(shè)拋物線y=2x2上點(diǎn)P到準(zhǔn)線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線方程為y=-,∴當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D12、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計(jì)圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來(lái),并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢(shì);散點(diǎn)圖表示因變量隨自變量而變化的大致趨勢(shì),故用來(lái)描述該超市近10天的日客流量不是很合適;故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:14、1【解析】由兩條直線垂直可知,進(jìn)而解得答案即可.【詳解】因?yàn)閮蓷l直線垂直,所以.故答案為:1.15、(1)證明見(jiàn)解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點(diǎn)、,利用點(diǎn)差法可求得直線的斜率,利用點(diǎn)斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當(dāng)在橢圓的內(nèi)部時(shí),,可得.設(shè)點(diǎn)、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達(dá)定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.16、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時(shí),,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即,因?yàn)?,,使得,所以,解得,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析.(2)【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,由面面角的空間向量求解方法可得答案.【小問(wèn)1詳解】證明:長(zhǎng)方體中,平面,又平面,又平面,又平面同理可證,而平面,平面【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系.從而,,,由(1)知,為平面的一個(gè)法向量,設(shè)平面的法向量為,則,,則,從而,令,則,得平面的一個(gè)法向量為由圖示得平面與平面所成的角為銳角,平面與平面所成的角的余弦值為18、(1)或;(2).【解析】(1)根據(jù)正弦定理邊角關(guān)系可得,再由三角形內(nèi)角的性質(zhì)求其大小即可.(2)由(1)及題設(shè)有,應(yīng)用余弦定理求得、,最后利用三角形面積公式求△的面積【小問(wèn)1詳解】由正弦定理得:,又,所以,又B為△的一個(gè)內(nèi)角,則,所以或;【小問(wèn)2詳解】由△不為鈍角三角形,即,又,,由余弦定理,,得(舍去負(fù)值),則∴19、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設(shè),利用向量坐標(biāo)運(yùn)算計(jì)算,再由二次函數(shù)求最值即可.【小問(wèn)1詳解】由,則軌跡C是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的右支,設(shè)軌跡C的方程為,則,可得,,所以C的方程為;【小問(wèn)2詳解】設(shè),則,且,圓心,則因?yàn)椋瑒t當(dāng)時(shí),取最小值23.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點(diǎn),連結(jié)和,通過(guò)線線平行得到面面,進(jìn)而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點(diǎn),連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點(diǎn)睛】方法點(diǎn)睛:線面平行常見(jiàn)的證明方法:(1)通過(guò)構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過(guò)構(gòu)造平行四邊形得到線線平行;(3)通過(guò)線面平行得到面面平行,再得線面平行.21、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)共焦點(diǎn)求出參數(shù)c,由長(zhǎng)軸長(zhǎng)求參數(shù)a,即可確定C的標(biāo)準(zhǔn)方程;(2)令過(guò)切線為,聯(lián)立橢圓C結(jié)合得到關(guān)于k的一元二次方程,根據(jù)根與系數(shù)關(guān)系即可證明結(jié)論.【小問(wèn)1詳解】由題設(shè),對(duì)于橢圓C有,又橢圓的焦點(diǎn)為,則,所以,故C的標(biāo)準(zhǔn)方程.【小問(wèn)2詳解】由題設(shè),直線,的斜率必存在,令橢圓C的切線方程為,聯(lián)立橢圓方程并整理可得:,由相切關(guān)系知:,整理得:,所以,即直線,相互垂直,則.22、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】頻率分布直方圖以面積的形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,所以計(jì)算面積之比即為所求小組的頻率.可用此方法計(jì)算(1),(2),由公式直接計(jì)算可得(1)中樣本容量;根據(jù)(2)問(wèn)中的達(dá)標(biāo)率,可計(jì)算不達(dá)標(biāo)率,從而求出不達(dá)標(biāo)人數(shù),可得(3);單獨(dú)計(jì)算第三組的頻率,由公式計(jì)算頻數(shù),可求出(4
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋁合金窗制作與安裝服務(wù)協(xié)議
- 2024污水提升器材環(huán)保型產(chǎn)品設(shè)計(jì)與制造合同3篇
- 2024清洗機(jī)銷售合同范本含產(chǎn)品檢驗(yàn)與質(zhì)量認(rèn)證3篇
- 2025版鋼管模板租賃市場(chǎng)準(zhǔn)入條件及價(jià)格評(píng)估合同3篇
- 2025版高性能鋼結(jié)構(gòu)工程安裝及售后服務(wù)合同3篇
- 2025年度日化用品綠色生產(chǎn)標(biāo)準(zhǔn)認(rèn)證合同3篇
- 2025年度新能源汽車充電樁建設(shè)合同范本3篇
- 2024年特許經(jīng)營(yíng)合同(加油站)
- 2024年教育機(jī)構(gòu)線上課程銷售合同樣本3篇
- 2025年家具企業(yè)廠長(zhǎng)任期考核與薪酬調(diào)整合同2篇
- 2024年秋季新人教PEP版三年級(jí)上冊(cè)英語(yǔ)全冊(cè)教案
- 商場(chǎng)反恐防暴應(yīng)急預(yù)案演練方案
- 成華區(qū)九年級(jí)上學(xué)期語(yǔ)文期末試卷
- 智慧物業(yè)管理的區(qū)塊鏈技術(shù)應(yīng)用
- 公安管理學(xué)試題(含答案)
- 先天性甲狀腺功能減低癥專家講座
- 淮安市洪澤區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末生物試題【帶答案】
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末語(yǔ)文試卷
- 青島版(五四制)四年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)課件
- 農(nóng)村污水處理設(shè)施運(yùn)維方案特別維護(hù)應(yīng)急處理預(yù)案
- 【施工組織方案】框架結(jié)構(gòu)施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論