![capillary ph - day1 workshop毛細管研討會_第1頁](http://file4.renrendoc.com/view9/M02/00/29/wKhkGWcaXG6AR0eyAACfNovnrTM533.jpg)
![capillary ph - day1 workshop毛細管研討會_第2頁](http://file4.renrendoc.com/view9/M02/00/29/wKhkGWcaXG6AR0eyAACfNovnrTM5332.jpg)
![capillary ph - day1 workshop毛細管研討會_第3頁](http://file4.renrendoc.com/view9/M02/00/29/wKhkGWcaXG6AR0eyAACfNovnrTM5333.jpg)
![capillary ph - day1 workshop毛細管研討會_第4頁](http://file4.renrendoc.com/view9/M02/00/29/wKhkGWcaXG6AR0eyAACfNovnrTM5334.jpg)
![capillary ph - day1 workshop毛細管研討會_第5頁](http://file4.renrendoc.com/view9/M02/00/29/wKhkGWcaXG6AR0eyAACfNovnrTM5335.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
IntelligentCustomerEngagement?SuiteRightCommunicationoftheRightProducttotheRightCustomerattheRightTimethroughtheRightChannelPizzahut–Day1Workshop16thOCT20142PM–2:30PMBriefChatonexistingBusinessAnalyticsChallengesQuickoverviewofPHsolutionofferingsprovidedGlobally2:30PM–4PMDatabaseManagement/ProcessesatCapillaryDataCleansing&HygieneMethodologies4PM–6PMFindingCustomerInsights&understandingthePizzaHutCustomerprofiles/segmentsCreatingapersonalizedexperienceusingSegmentation&PredictivemodellingQ&AWorkshopAgenda–Day1PrivateandConfidential10/24/20243ServiceOfferingstoPHGloballyServicesPHSingaporePHIndiaPHAustraliaCustomerSegmentation
CampaignManagement
MultipleAttributePersonalisation
MenuOptimization/ProductMix
CampaignMetricsElevation
DirectMailerOptimization
VIPProgram
CustomerLifecycleImplementation
SocialMediaCampaign
IntelligentCustomerEngagement?SuiteRightCommunicationoftheRightProducttotheRightCustomerattheRightTimethroughtheRightChannelDatabaseManagementCleansing&HygieneDataFlow&FeaturesCustomerSegmentationPredictiveAnalyticsInteractiveVisualizationCustomerInsightsSFTPorOtherSourceValidation/Transformation/CleansingScalableArchitectureMarketingDataWarehouseHadoopHorizontallyScalableCloudFastProcessingIntegratedR/OtherStatisticalToolsBigDataStackBusinessIntelligencePHDataIntelligentdecisionsQuick&QualityInsightsAlldatacollatedatoneplaceCapillaryTechnologySystemETLDataCollationDataAugmentationDataAttributes&MonetizationStrategyExecution3rdPartyDataMultiChannelTransactionsInventoryStoreDetailsFeedbackStoreLocationsDemographicsCleaningInventoryDeDupOutlierTreatmentRemoveInvalidEmail/MobilePinCode&AddressStoreLocationACORNProfilingMarketingDataWarehouseCustomerBasedPreferenceBasedComm.BasedCampaignExecutionLoyaltyProgramPrescriptiveModellingMenuOptimizationMarketMixModellingLifeCycleMarketingOrderGroupSizesCombo/a-la-carteBehaviourWhyLocationWhereProductWhatCustomerInfoSubscriptionInfoTransactionsBuyingPreferences&AttitudesPerceptions&SatisfactionProfitability&PotentialTransactDataCallCenterECommerceMobileSocialSegmentationProfilingPlanningStagnantDatatoDecisionBasedMarketingdriventhroughDataPrivateandConfidential10/24/20247DataHygiene:Snapshotof5-stepprocessStandardizeCleanseValidateDataTransformationBestETLPractiseEnrich/Integrate/AutomateAnyDemographicsPostalStandardsDe-dupeRe-parentChildRecordsAccount:Franchisee,Location,StoreValidate&ModifyLoadtoProductionStoreNamesMarina,SGP->Marina-SingaporeFind&ReplaceHotHigh
MedPizzaMediumPizzaIdentify,Match&ScoreJ.Smith,JohnSmith–80%CompanyName&AddressUS,U.S,U.S.A->USAAddressesBillID:Store-Date-BillDataConventionsMergeJ.Smith,JohnSmith->JohnSmithYear,QuarterMonth,Week,DayHierarchyDataNameAddressSectorPostalCodePhoneEmailStephenS.83JlnTunRazakKl5540006222-8511
StephenSim83JlnTunRaz540006222851162228511AngLee54000
StandardizeandcompletemissingaddressApplystandardizedfieldformattingSourcedatacleanupApplystandarddataValidationDATAQUALITYMAINTAINEDATALLTIMESUsecombinationofname,address,andemailtomatchmultiplecustomerrecordsDataCleaningensuresValidityAccuracyCompletenessConsistencyUniformity360viewofacustomer–SingleViewTransactionMenu360ViewofcustomerAttributesDetailsCustomerfirstorderedon1Jan’14.VIPcustomerofageabout35yrs(Familyof4)&Guestchequevalueisalwaysabove$55,preferstoorderonweekendsduringdinnertime.PrefertoreceivethecommunicationsoverE-Mail&Mailers(butnotText)“Thecustomerordered$80forhomedeliverythroughthecallcenteron12Oct2014@10:15PM““Thecustomerordered3Reg.Pizzas(extratoppings),2Breadand3Drinks“Feedback(ServiceSenstivity)Customerisamalewithageof35withafamilyof4,wholovesmeatProductdetailslikesize,price,Department,categoryetc.,ThecustomerlovePizzahut,thoughhisPizzagetsdeliveredlatefewofthetimesDemographics(IncludingThirdpartysources)CustomerLocationClickedonatleast50%oftheE-MailsentLocationsBehavioralfactorsMenuSensitivityOneViewforAllSingleViewImplementation–EmpoweringtheAssociatesPoweredbyCapillaryANALYTICSDrivenby3rdPARTYDataDrivenbyPHMARKETINGIntelligentCustomerEngagement?SuiteRightCommunicationoftheRightProducttotheRightCustomerattheRightTimethroughtheRightChannelCustomerInsightsPrivateandConfidential10/24/202412UnderstandingtheCustomerproductorderBehaviorCustomerproductpreferencesGroupSize–SurrogatevariableforFamilysizeCustomers(withlargefamilysizeorpartyorder)prefertoorderofflineThereisahugecross-sellingopportunitywiththe8%customerswhoorderonlyPizza(NocomboorNoSideorder)Insight#1–CustomertendtosticktotheirtimeoforderpreferencesHaveatimepreferenceasDinner&madenextorderduringDinnertimeHaveatimepreferenceasLunch&madenextorderduringLunchtime74%ofthecustomerswithtimepreferenceasaDinnerorderedforDinneragainintheirnextorder69%ofthecustomerswithtimepreferenceasaLunchorderedforLunchagainintheirnextorderInsight#2–CustomertendtosticktotheirdayoforderpreferencesHaveadaypreferenceasWeekday&madenextorderduringWeekdayHaveadayorderasWeekend&madenextorderduringWeekend67%ofthecustomerswithdaypreferenceasaWeekday,orderedduringWeekdayduringtheirnextorder64%ofthecustomerswithdaypreferenceasaWeekend,orderedduringWeekendduringtheirnextorderIntelligentCustomerEngagement?SuiteRightCommunicationoftheRightProducttotheRightCustomerattheRightTimethroughtheRightChannelCustomerSegmentationRe-definingtheJourneyofPHLoyalCustomerNewCustomerAcquireActiveCustomerUpgradeReward&NurtureLoyalCustomerWinBackInactiveCustomer(Lapsed)PreventWinBackPreventInactiveCustomer(Dormant)*SegmentdefinitionsarecoveredinthelaterstageofpresentationTypesofSegmentations–ActiveCustomersSegmentationBehavorialRecency/BillValueModelFM/RFMModel*Multi-VariateGeographicZipCodeSectorCity*RFMSegmentsissimilartoHeavy,Medium&LightUserSegmentsATTRIBUTESExtrapolatedAttributesCommunicationTagsPreferenceTagsSegmentationTagsfirst_purchase_datetest_control_flagchannel_prefbeh_cluster_idlast_purchase_dateopt_in_out_statusweekday_end_preftaste_cluster_idfirst_purchase_storesms_eligiblelunch_dinner_prefactivity_segmentlast_purchase_storeemail_eligiblefav_daycustomer_tagno_of_transactionsdnc_statusfav_sectordm_group_noavg_transaction_valueNDNC_smsfav_storebills_tagrepeat_transactionsNDNC_emailprod_favabv_tagper_repeat_transactionsmob_flagprod_fav_descrfm_tagrecencyundelivered_flagprod_fav_cat_descopen_bandingfrequencyspent_per_skuavg_group_size_taglife_time_purchase
per_sides_tagcustomer_ranking
delivery_takeaway_prefno_of_visitsnormalized_visitsonline_fpddiscount_perExtrapolatedAttributesarebasicattributesusedtotrackindividualcustomerperformance.NormalizedattributesarealsocreatedfromthebasicformofAttributes(wherevernecessary)Segmentationtagsarecreatedbasedoncustomerbehaviorandusedtoidentifydifferentcustomersegments.LifetimeSpend%discountbillsAvgPriceperPizzaLatencyNormalizedFrequencySegmentationMethodology120+variablesthatimpactpurchasebehaviorHighimpactvariablesKMeansMethodologySignificanceDrinkPreferenceABVCumulativeSpendSpendperVisit%DiscountLatencyGroupSizeAvgPriceperPizzaPrivateandConfidential10/24/202420BehaviorSegments-OverviewHavehighestlifetimepurchasevalueMakevisitsmorefrequentlythantheentirebaseMostlycomesinagroupof3ormorePrefertopurchaseduringpromotionsHighLoyalC1HighDollarC3ValueConsciousC4PHFollowerC2HavethehighestspendpervisitVisitataverylowfrequencyPreferstocomeinlargergroupsHavealowlifetimepurchasevalueVisitsmostfrequentlythantheentirebasemakingthisbestfrequencysegmentHaveahighlifetimepurchasevaluePreferstocomeinsmallergroupsHaslowaveragespendpervisitthanthewholecustomerbaseHavethelowestspendpervisitVisitatalowfrequencyPreferstocomeinagroupof2ormoreHavealowlifetimepurchasevalueExampleofBehaviorSegmentsmendation:Bytargetingthesecustomerswithnewproductlaunchesensurethesecustomersbuildyourbrandingexercisethrough“WordofMouth”FeedbackfromthisgroupisveryimportanttobuildLoyalty.EnsuretheProduct&servicesaredeliveredeffectivelytothisgroup.HighLoyalRegularBuyers
C1HighLoyal–CampaignProposalRemainingcustomersareunclassifiedTasteClusters-OverviewPrivateandConfidential10/24/202424RepeatPizzaBuyersC1ComboLoversC3MenuMinersC4PizzaGourmetsC2LovetodosideordersalongwithPizzas(Ex:2Pizza+1Pastalasttimeconvertsto2Pizza+1drink+1Garlicbread)Alwaysprefertobuycombosratherthanala-carteKeepontryingdifferentcombinationswithbothpizzas&sideorders
KeepontryingDifferentCombinationsofpizzasandsideorders(Ex:Ordered2Pizzaslasttime,thistimetheyordered2Pizzas+1Pasta)HighersalescontributionfromPizzas&arealwayssearchingforsomethingnewSticktothesamecombinationoforder(Ex:1Pizza+1Pastainalltheorders)butkeepsontreatingtheirtastepalettewithanewdishPreferstoordermoreofsideordersandothervarietiesratherthanpizzaPicksthesamepizzaeverytime
Stickstosamecombination&sameqty(TypicallyOrders2Pizzas&0SideOrder)LessSideOrders&HighSalesContributionfromPizzasExampleofTasteSegmentsPizzaGourmetsmendation:TargetcustomerswiththeirFavouritepizzatohavealargerinfluenceontheircampaignresponserate&eventuallyincreaseyearlyfrequencyPizzaGourmetsC1RepeatPizzaBuyer–CampaignProposalBreakingitfurtherintosmallerMicroClustersDifferentiatedonBehavioralParametersDifferentiatedonTaste
ParametersHighLoyalPHFollowerHighDollarsRepeatPizzaBuyersMenuMinersComboLoversPizzaGourmetsValueConscious16.2%10.9%6.6%12.0%5.3%1.7%10.4%7.7%3.8%2.6%4.9%7.3%1.8%6.4%0.2%2.1%24.2.%12.7%5.7%7.1%5.9%1.1%8.4%3.5%4.9%2.0%4.5%3.9%4.3%9.6%0.4%1.7%Customers-45.8%Sales-49.7%Customers-25.1%Sales-18.9%Customers-18.6%Sales-15.4%Customers-10.5%Sales-16.0%Customers-27.2%Sales-39.3%Customers-21.6%Sales-25.4%Customers-22.2%Sales-19.0%Customers-29.0%Sales-16.2%HighLoyal–RepeatPizzaBuyerObservations:11%higherspendpervisitEat1sideorderlessforthesamenumberofpizzas41%higherGroupSizeMainlyorderRegularPizzasABVBandingmendation:Nurturethem&providegoodrewardsastheyarerepresentativeofyour“WordofMouth”marketingchannel.Targetthisgroupwiththeirfavoritepizzatoattractthem&increasetheirfrequency.PizzaSizeBandingPHOfferDesigningApproachApproach:ExistingOffersRightMicro-segmentGroupFindingouttherightmicro-segmentgroupbasedontheexistingofferstostreamline&makethecommunicationprocesseffectiveOfferDesignsatMicroClusterLevel
HighLoyalPHFollowersHighDollarsValueConsciousRepeatPizzaBuyersTryyourfavouritepizza&getournewbreadsticksfreeBillswithmorethan30$,canclaimupto10$discountBuy3Pizzas@10$eachGetaPanpizzafreeonanyOrderPizzaGourmetsBuy2Pizzas@10$eachGetRegularPizzafreewithanyorderBuy2LargePizzas@30$GetaPanpizzafreeonanyOrderComboLoversSpicyDrumletsFreeonanyorderBuy1Pizza&getanysideorderfreeBuy3RegPizzasor2LargePizzas@30$&GetaSpicyDrumletsfreeHoneyRoastedwingsfreeMenuMinersBuy2Pizzas&getany2sideordersfreeHoneyroastedwingsfreeHotchickenwingsfreeonanyorderBuy1Pizza&getanysideorderfreePrivateandConfidential10/24/202430DerivedfromDataFavouriteProduct:SeafoodSymphonyGroupSize:2Prefersweekenddeliveryafter6pmPrefersSMSmorethanEmailDidn’tmadeapurchaseinlast90daysInsightsgatheredafterobservingcustomerduringhis/herpastvisitsAvailableOffers
Feastfor2at$27(1MediumPizza+1sideorder+1coke)Feastfor4at$49(2MediumPizza+2sideorder+2coke)Buy2Largepizzasandget6pcsofSpicyDrumletsfreeGet3Largepizzasfor$48Objective:Toprovidethecustomerwiththerightofferatrighttimethroughrightchannel.Approach:Basedoncustomercharacteristics,systemselectsthebestofferforcustomerfromthepoolofavailableoffersandgeneratesappropriateSMStextExecution:SMStexteg.:“PizzaHutmissesyouMr.John.Partywithusandget1PrawnPizza,GarlicBread/ChocpopsandCokefor$26.99”IloveapizzawithprawntoppingIliketostayinwithmyfamilyof2andhavepizzaonFridayeveningsIliketoreceivecouponsthroughSMSchannelPersonalizedExperienceAngLeeIntelligentCustomerEngagement?SuiteRightCommunicationoftheRightProducttotheRightCustomerattheRightTimethroughtheRightChannelStatisticalModel–ImplementationforPHUseofStatisticalModelsPastCustomerBehaviorBuild
ModelValidationandTestFindProbabilityIndexofCustomers.....HighestProbabilityLowestProbab
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 海南2025年國家糧食和物資儲備局海南儲備物資管理處招聘16人筆試歷年參考題庫附帶答案詳解
- 標準緊固件項目籌資方案
- 泰州2025年江蘇泰州職業(yè)技術(shù)學(xué)院口腔門診部招聘合同制口腔助理醫(yī)師筆試歷年參考題庫附帶答案詳解
- 河北河北省第三榮軍優(yōu)撫醫(yī)院選聘高層次退休人才3人筆試歷年參考題庫附帶答案詳解
- 昆明2025年云南昆明市五華區(qū)云銅中學(xué)合同制教師招聘筆試歷年參考題庫附帶答案詳解
- 2025年中國印染廢水特效脫色劑市場調(diào)查研究報告
- 廣州2025年廣東廣州市天河區(qū)瑜翠園幼兒園編外聘用制專任教師招聘筆試歷年參考題庫附帶答案詳解
- 2025年綠籬機齒輪項目可行性研究報告
- 2025年滴流樹脂項目可行性研究報告
- 2025年楓木實木地板項目可行性研究報告
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動態(tài)及未來發(fā)展趨勢預(yù)測報告
- DB14T+3154-2024泡沫瀝青就地冷再生路面施工技術(shù)規(guī)范
- 2024年新華東師大版七年級上冊數(shù)學(xué)全冊教案(新版教材)
- 醫(yī)院物業(yè)管理制度
- 新版高中物理必做實驗?zāi)夸浖捌鞑?(電子版)
- 初中數(shù)學(xué)思維訓(xùn)練雙十字相乘法因式分解練習(xí)100道及答案
- (正式版)QC∕T 625-2024 汽車用涂鍍層和化學(xué)處理層
- 售后服務(wù)部部門組織架構(gòu)
- 提升模組良率-六西格瑪
- DL-T+5196-2016火力發(fā)電廠石灰石-石膏濕法煙氣脫硫系統(tǒng)設(shè)計規(guī)程
- 2024年江蘇省無錫市中考英語試卷附答案
評論
0/150
提交評論