北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題含解析_第1頁
北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題含解析_第2頁
北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題含解析_第3頁
北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題含解析_第4頁
北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市西城區(qū)156中學2025屆數(shù)學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件2.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點,BE,DH的交點為G,則的化簡結果為()A. B.C. D.3.直線的傾斜角大小為()A. B.C. D.4.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.5.①命題設“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.46.點分別為橢圓左右兩個焦點,過的直線交橢圓與兩點,則的周長為()A.32 B.16C.8 D.47.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.8.若,則()A.1 B.2C.4 D.89.設函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.10.已知直線為拋物線的準線,直線經(jīng)過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.811.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.12.設平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數(shù)k的取值范圍是___________.14.直線與曲線有且僅有一個公共點.則b的取值范圍是__________15.已知橢圓交軸于A,兩點,點是橢圓上異于A,的任意一點,直線,分別交軸于點,,則為定值.現(xiàn)將雙曲線與橢圓類比得到一個真命題:若雙曲線交軸于A,兩點,點是雙曲線上異于A,的任意一點,直線,分別交軸于點,,則為定值___16.復數(shù)的實部為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與圓.(1)當直線l恰好平分圓C的周長時,求m的值;(2)當直線l被圓C截得的弦長為時,求m的值.18.(12分)已知數(shù)列的前項和滿足(1)證明:數(shù)列為等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,,求數(shù)列的前項和19.(12分)新型冠狀病毒的傳染主要是人與人之間進行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認為“長期潛伏”與年齡有關;(2)假設潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設個病例中恰有個屬于“長期潛伏”的概率是,當為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.20.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.21.(12分)“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖1所示:(1)利用圖1,求網(wǎng)民消費金額的平均值和中位數(shù);(2)把下表中空格里的數(shù)填上,能否有的把握認為網(wǎng)購消費與性別有關.男女合計30合計45附表:P(χ2≥k0)0.100.050.012.7063.8416.635參考公式:χ2=.22.(10分)已知空間三點.(1)求以為鄰邊平行四邊形的周長和面積;(2)若,且分別與垂直,求向量的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】討論橢圓焦點的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關系.【詳解】當橢圓的焦點在軸上時,,得;當橢圓的焦點在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.2、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運算法則即可求出結果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點,,,故選:D3、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關系可直接求解.【詳解】由直線可得,所以,設傾斜角為,則因為所以故選:B4、D【解析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設,連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:5、B【解析】利用逆否命題、含有邏輯聯(lián)結詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構成空間的另一基底,④正確.所以正確的判斷是個.故選:B6、B【解析】由題意結合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B7、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導公式要記熟8、D【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.9、C【解析】利用導數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導數(shù)研究在上的最值即可得結果.【詳解】由題設,,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C10、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當?shù)忍柍闪?,故的最小值?,故選:D.11、D【解析】先求定義域,再求導數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.12、D【解析】由向量的數(shù)量積公式結合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結合進行分析.15、-【解析】由雙曲線的方程可得,的坐標,設的坐標,代入雙曲線的方程可得的橫縱坐標的關系,求出直線,的方程,令,分別求出,的縱坐標,求出的表達式,整理可得為定值【詳解】由雙曲線的方程可得,,設,則,可得,直線的方程為:,令,則,可得,直線的方程為,令,可得,即,∴,,,故答案為:-另解:雙曲線方程化為,只是將的替換為-,故答案也是只需將中的替換為-即可.故答案為:-.16、【解析】復數(shù),其實部為.考點:復數(shù)的乘法運算、實部.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)1.【解析】(1)將圓C的圓心坐標代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點到直線距離公式計算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長,則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.18、(1)證明見解析(2)【解析】(1)由與的關系,利用等比數(shù)列的定義證明即可;(2)由(1)求出,再利用裂項相消法求解即可【小問1詳解】當時,,,當時,,,,數(shù)列是以為首項、以為公比的等比數(shù)列【小問2詳解】由(1)得,,即,,設等差數(shù)列的公差為,則,,,,,19、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認為“長期潛伏”與年齡有關;(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當時,;當時,;∴,.故當時,取得最大值.【點睛】方法點睛:利用獨立重復試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗不僅是在完全相同的情況下進行的重復試驗,而且各次試驗的結果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率20、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當直線的斜率不存在直線得到直線方程,但直線的斜率存在時設直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據(jù)題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據(jù)題意,點在圓外,分兩種情況討論:當直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當直線的斜率存在時,設直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿足條件的直線的方程是或.21、(1),(2)列聯(lián)表見解析,沒有【解析】(1)根據(jù)平均數(shù)的定義求平均數(shù),由于前2組的頻率和恰好為,從而可求出中位數(shù),(2)根據(jù)頻率分布表結合已知的數(shù)據(jù)計算完成列聯(lián)表,然后計算χ2公式計算χ2,再根據(jù)臨界值表比較可得結論【小問1詳解】以每組的中間值代表本組的消費金額,則網(wǎng)民消費金額的平均值為0.頻率直方圖中第一組、第二組的頻率之和為,中位數(shù);【小問2詳解】把下表中空格里的數(shù)填上,得列聯(lián)表如下;男女合計252550203050

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論