版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省福州市2025屆高一數(shù)學第一學期期末復習檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中既是奇函數(shù),又在區(qū)間上是增函數(shù)的是()A. B.C. D.2.在北京召開的國際數(shù)學家大會的會標如圖所示,它是由個相同的直角三角形與中間的小正方形拼成的一個大正方形,若直角三角形中較小的銳角為,大正方形的面積是,小正方形的面積是,則A. B.C. D.3.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知,則A.-2 B.-1C. D.25.已知函數(shù)f(x)=3x???????A. B.C. D.6.已知集合,且,則的值可能為()A. B.C.0 D.17.若,則關(guān)于的不等式的解集是()A. B.或C.或 D.8.命題“?x>0,x2=x﹣1”的否定是()A.?x>0,x2≠x﹣1 B.?x≤0,x2=x﹣1C.?x≤0,x2=x﹣1 D.?x>0,x2≠x﹣19.已知函數(shù)f(x)=是奇函數(shù),若f(2m-1)+f(m-2)≥0,則m的取值范圍為()A. B.C. D.10.在中,,則的值為A. B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)的圖象經(jīng)過點,且滿足條件,則實數(shù)的取值范圍是___12.求過(2,3)點,且與(x-3)2+y2=1相切的直線方程為_____13.已知,,則的值為_______.14.______________15.已知函數(shù),,若對任意的,都存在,使得,則實數(shù)的取值范圍為_________.16.奇函數(shù)f(x)是定義在[-2,2]上的減函數(shù),若f(2a+1)+f(4a-3)>0,則實數(shù)a的取值范圍是_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)若在區(qū)間上是單調(diào)函數(shù),則的取值范圍;(2)在(1)的條件下,是否存在實數(shù),使得函數(shù)與函數(shù)的圖象在區(qū)間上有唯一的交點,若存在,求出的范圍,若不存在,請說明理由.18.求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程19.已知函數(shù)(1)當時,求該函數(shù)的值域;(2)求不等式的解集;(3)若存在,使得不等式成立,求的取值范圍20.已知函數(shù)的最小正周期為.(1)求的值和的單調(diào)遞增區(qū)間;(2)令函數(shù),求在區(qū)間上的值域.21.已知的三個內(nèi)角所對的邊分別為,且.(1)角的大小;(2)若點在邊上,且,,求的面積;(3)在(2)的條件下,若,試求的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用函數(shù)的定義域、奇偶性、單調(diào)性等性質(zhì)分別對各選項逐一判斷即可得解.【詳解】對于A,函數(shù)圖象總在x軸上方,不是奇函數(shù),A不滿足;對于B,函數(shù)在R上遞增,且,該函數(shù)是奇函數(shù),B滿足;對于C,函數(shù)是偶函數(shù),C不滿足;對于D,函數(shù)定義域是非零實數(shù)集,而,D不滿足.故選:B2、C【解析】根據(jù)題意即可算出每個直角三角形面積,再根據(jù)勾股定理和面積關(guān)系即可算出三角形的兩條直角邊.從而算出【詳解】由題意得直角三角形的面積,設(shè)三角形的邊長分別為,則有,所以,所以,選C.【點睛】本題主要考查了三角形的面積公式以及直角三角形中,正弦、余弦的計算,屬于基礎(chǔ)題3、B【解析】根據(jù)充分條件、必要條件的概念判斷即可.【詳解】若,則成立,即必要性成立,反之若,則不成立,所以“”是“”的必要不充分條件.故選:B.4、B【解析】,,則,故選B.5、B【解析】根據(jù)對數(shù)的運算性質(zhì)求出,再根據(jù)指數(shù)冪的運算求出即可.【詳解】由題意知,,則,所以.故選:B6、C【解析】化簡集合得范圍,結(jié)合判斷四個選項即可【詳解】集合,四個選項中,只有,故選:C【點睛】本題考查元素與集合的關(guān)系,屬于基礎(chǔ)題7、D【解析】判斷出,再利用一元二次不等式的解法即可求解.【詳解】因,所以,即.所以,解得.故選:D【點睛】本題考查了一元二次不等式的解法,考查了基本運算求解能力,屬于簡單題.8、D【解析】根據(jù)特稱命題的否定是全稱命題的知識選出正確結(jié)論.【詳解】因為特稱命題的否定是全稱命題,注意到要否定結(jié)論,所以:命題“?x>0,x2=x﹣1”的否定是:?x>0,x2≠x﹣1故選:D【點睛】本小題主要考查全稱命題與特稱命題,考查特稱命題的否定,屬于基礎(chǔ)題.9、B【解析】由已知結(jié)合f(0)=0求得a=-1,得到函數(shù)f(x)在R上為增函數(shù),利用函數(shù)單調(diào)性化f(2m-1)+f(m-2)≥0為f(2m-1)≥f(-m+2),即2m-1≥-m+2,則答案可求【詳解】∵函數(shù)f(x)=的定義域為R,且是奇函數(shù),,即a=-1,∵2x在(-∞,+∞)上為增函數(shù),∴函數(shù)在(-∞,+∞)上為增函數(shù),由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范圍為m≥1故選B【點睛】本題考查函數(shù)單調(diào)性與奇偶性的應用,考查數(shù)學轉(zhuǎn)化思想方法,是中檔題10、C【解析】直接利用三角函數(shù)關(guān)系式的恒等變換和特殊角的三角函數(shù)的值求出結(jié)果【詳解】在中,,則,,,,故選C【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換和特殊角三角函數(shù)的值的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先求得函數(shù)的解析式,然后求解實數(shù)的取值范圍即可.【詳解】設(shè)冪函數(shù)的解析式為,由題意可得:,即冪函數(shù)的解析式為:,則即:,據(jù)此有:,求解不等式組可得實數(shù)的取值范圍是.【點睛】本題主要考查冪函數(shù)的定義及其應用,屬于基礎(chǔ)題.12、或【解析】當直線沒有斜率時,直線的方程為x=2,滿足題意,所以此時直線的方程為x=2.當直線存在斜率時,設(shè)直線的方程為所以故直線的方程為或.故填或.13、-.【解析】將和分別平方計算可得.【詳解】∵,∴,∴,∴,又∵,∴,∴,故答案為:-.【點晴】此題考同腳三角函數(shù)基本關(guān)系式應用,屬于簡單題.14、【解析】利用指數(shù)的運算法則和對數(shù)的運算法則即求.【詳解】原式.故答案為:.15、##a≤【解析】時,,原問題.【詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當時,顯然不等式恒成立;當時,,解得;當時,,此時不成立.綜上,.故答案為:.16、[【解析】利用函數(shù)的奇偶性、單調(diào)性去掉不等式中的符號“f”,可轉(zhuǎn)化為具體不等式,注意函數(shù)定義域【詳解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)為奇函數(shù),得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定義在[-2,2]上的減函數(shù),∴解得:1即a∈故答案為:1【點睛】本題考查函數(shù)的奇偶性、單調(diào)性的綜合應用,考查轉(zhuǎn)化思想,解決本題的關(guān)鍵是利用性質(zhì)去掉符號“f”三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)存在,且的取值范圍是.【解析】(1)分、兩種情況討論,根據(jù)函數(shù)在區(qū)間上單調(diào)可出關(guān)于的不等式,綜合可得出實數(shù)的取值范圍;(2)分、、、四種情況討論,分析兩個函數(shù)在區(qū)間上的單調(diào)性,根據(jù)已知條件可得出關(guān)于實數(shù)的不等式(組),綜合可解得實數(shù)的取值范圍.【小問1詳解】解:當時在上單調(diào)遞減.當時,是二次函數(shù),其對稱軸為直線,在區(qū)間上是單調(diào)函數(shù),或,即或,解得:或或.綜上:或.【小問2詳解】解:①當時,單調(diào)遞減,單調(diào)遞增,則函數(shù)單調(diào)遞增,因為,,由零點存在定理可知,存在唯一的使得,此時,函數(shù)與函數(shù)在區(qū)間上的圖象有唯一的交點,合乎題意;②當時,二次函數(shù)的圖象開口向下,對稱軸為直線,所以,在上單調(diào)遞減,單調(diào)遞增,則函數(shù)在上單調(diào)遞增,要使得函數(shù)與函數(shù)的圖象在區(qū)間上有唯一的交點,則,解得,此時;③當時,二次函數(shù)的圖象開口向上,對稱軸,則在上單調(diào)遞減,在上單調(diào)遞增,則函數(shù)上單調(diào)遞增,要使得函數(shù)與函數(shù)的圖象在區(qū)間上有唯一的交點,則,解得,此時;④當時,二次函數(shù)的圖象開口向上,對稱軸,所以,在上單調(diào)遞增,在上單調(diào)遞增,則,,所以,在上恒成立,此時,函數(shù)與函數(shù)的圖象在區(qū)間上沒有交點.綜上所述,實數(shù)的取值范圍是.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.18、或.【解析】根據(jù)題意,設(shè)圓心為,圓被直線截得的弦為為的中點,連結(jié).由垂徑定理和點到直線的距離公式,建立關(guān)于的方程并解出值,即可得到滿足條件的圓的標準方程【詳解】試題解析:設(shè)所求的圓的方程是,則圓心到直線的距離為,①由于所求的圓與x軸相切,所以②又因為所求圓心在直線上,則③聯(lián)立①②③,解得,或.故所求的圓的方程是或.19、(1);(2)或;(3)【解析】(1)令,函數(shù)化為,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解;(2)由題意得到,令,得到,求得不等式的解集,進而求得不等式的解集,得到答案;(3)令,轉(zhuǎn)化為存在使得成立,結(jié)合函數(shù)的單調(diào)性,求得函數(shù)最小值,即可求解.【詳解】(1)令,因為,則,函數(shù)化為,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以當時,取到最小值為,當時,取到最大值為5,故當時,函數(shù)的值域為(2)由題意,不等式,即,令,則,即,解得或,當時,即,解得;當時,即,解得,故不等式的解集為或(3)由于存在使得不等式成立,令,,則,即存在使得成立,所以存在使得成立因為函數(shù)在上單調(diào)遞增,也在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,它的最小值為0,所以,所以的取值范圍是20、(1),函數(shù)單調(diào)遞增區(qū)間:,;(2).【解析】(1)利用函數(shù)的周期求解,得到函數(shù)的解析式,然后求解函數(shù)的單調(diào)增區(qū)間;(2)由題得,再利用三角函數(shù)的圖象和性質(zhì)求解.【詳解】解:(1)函數(shù)的最小正周期.可得,,所以,所以函數(shù),由,,所以,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《內(nèi)蒙古館開館演講》課件
- 2025年度三人農(nóng)業(yè)科技項目合伙人合同范本3篇
- 2024防水材料購銷合作合同版B版
- 2024高端住宅精裝修承攬協(xié)議版B版
- 動物遺傳繁育知到智慧樹章節(jié)測試課后答案2024年秋甘肅畜牧工程職業(yè)技術(shù)學院
- 2024版工業(yè)級不銹鋼管訂貨協(xié)議版
- 劇院木地板施工合同
- 隧道智能化系統(tǒng)采購合同
- 飛機檢修高空作業(yè)車租賃協(xié)議
- 鐵路工程安全施工協(xié)議
- 管理ABC-干嘉偉(美團網(wǎng)COO)
- XX市“互聯(lián)網(wǎng)+”-土地二級市場交易建設(shè)方案
- 2023-2024學年度第一學期四年級數(shù)學寒假作業(yè)
- 大學軍事理論課教程第三章軍事思想第三節(jié)中國古代軍事思想
- 駕駛員勞務派遣投標方案
- 家長會課件:四年級家長會語文老師課件
- 續(xù)簽勞動合同意見征詢書
- 水封式排水器的研究
- 導線三角高程計算表(表內(nèi)自帶計算公式)
- 小學數(shù)學課堂教學評價表
- 鋼管裝卸安全管理規(guī)定
評論
0/150
提交評論