版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江西省贛州市博雅文普通高中畢業(yè)班教學(xué)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.2.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F且EF=,則下列結(jié)論中錯(cuò)誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值3.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.6.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為()A. B. C. D.7.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見(jiàn)每朝行里數(shù),請(qǐng)公仔細(xì)算相還.”其意思為:“有一個(gè)人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個(gè)描述請(qǐng)算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.9.如圖,棱長(zhǎng)為的正方體中,為線段的中點(diǎn),分別為線段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.10.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種11.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間12.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個(gè)交點(diǎn)為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列等式:,,,…請(qǐng)從中歸納出第個(gè)等式:______.14.已知、為正實(shí)數(shù),直線截圓所得的弦長(zhǎng)為,則的最小值為__________.15.設(shè)滿足約束條件,則的取值范圍為__________.16.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為______________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,設(shè)、、分別為角、、的對(duì)邊,記的面積為,且.(1)求角的大??;(2)若,,求的值.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)419線上學(xué)習(xí)時(shí)間不足5小時(shí)合計(jì)45(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.20.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.21.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.22.(10分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.2、D【解析】
A.通過(guò)線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計(jì)算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因?yàn)椋云矫?,又因?yàn)槠矫?,所以,故正確;B.因?yàn)椋?,且平面,平面,所以平面,故正確;C.因?yàn)闉槎ㄖ?,到平面的距離為,所以為定值,故正確;D.當(dāng),,取為,如下圖所示:因?yàn)?,所以異面直線所成角為,且,當(dāng),,取為,如下圖所示:因?yàn)椋运倪呅问瞧叫兴倪呅?,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查立體幾何中的綜合應(yīng)用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計(jì)算,難度較難.注意求解異面直線所成角時(shí),將直線平移至同一平面內(nèi).3、D【解析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.4、A【解析】
根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.5、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問(wèn)題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.6、D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時(shí)期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.7、C【解析】
設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的某一項(xiàng)的求法,考查等比數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.8、C【解析】
根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對(duì)的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.9、D【解析】
取中點(diǎn),過(guò)作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過(guò)作面,如圖:則,故,而對(duì)固定的點(diǎn),當(dāng)時(shí),最小.此時(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.10、D【解析】
采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題11、D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點(diǎn)睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題12、C【解析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長(zhǎng)的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
通過(guò)已知的三個(gè)等式,找出規(guī)律,歸納出第個(gè)等式即可.【詳解】解:因?yàn)椋海?,,等式的右邊系?shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個(gè)等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.14、【解析】
先根據(jù)弦長(zhǎng),半徑,弦心距之間的關(guān)系列式求得,代入整理得,利用基本不等式求得最值.【詳解】解:圓的圓心為,則到直線的距離為,由直線截圓所得的弦長(zhǎng)為可得,整理得,解得或(舍去),令,又,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,則.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系,考核基本不等式求最值,關(guān)鍵是對(duì)目標(biāo)式進(jìn)行變形,變成能用基本不等式求最值的形式,也可用換元法進(jìn)行變形,是中檔題.15、【解析】
由題意畫出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉(zhuǎn)化目標(biāo)函數(shù)為,通過(guò)平移直線,數(shù)形結(jié)合可知:當(dāng)直線過(guò)點(diǎn)A時(shí),直線截距最大,z最??;當(dāng)直線過(guò)點(diǎn)C時(shí),直線截距最小,z最大.由可得,由可得,當(dāng)直線過(guò)點(diǎn)時(shí),;當(dāng)直線過(guò)點(diǎn)時(shí),,所以.故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16、90°【解析】
易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點(diǎn)睛】本題四棱錐外接球有關(guān)的問(wèn)題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)由三角形面積公式,平面向量數(shù)量積的運(yùn)算可得,結(jié)合范圍,可求,進(jìn)而可求的值.(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因?yàn)?,所以,可得:.?)中,,所以.所以:,由正弦定理,得,解得,【點(diǎn)睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運(yùn)算,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.18、(1)填表見(jiàn)解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”(2)①詳見(jiàn)解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進(jìn)而得到概率,列出分布列;根據(jù)分析知,計(jì)算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計(jì)線上學(xué)習(xí)時(shí)間不少于5小時(shí)15419線上學(xué)習(xí)時(shí)間不足5小時(shí)101626合計(jì)252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機(jī)抽取1人,此人每周上線時(shí)間不少于5小時(shí)的概率為,設(shè)從全校不少于120分的學(xué)生中隨機(jī)抽取20人,這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)為,則,故,.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列、數(shù)學(xué)期望與方差的計(jì)算問(wèn)題,屬于基礎(chǔ)題.19、(1)證明見(jiàn)詳解;(2).【解析】
(1)取中點(diǎn)為,通過(guò)證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)旅游管理咨詢服務(wù)行業(yè)全國(guó)市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)餐飲供應(yīng)鏈行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 市政道路工程監(jiān)理評(píng)估報(bào)告
- 2024年幼兒園大班健康教案
- 2025年冶金機(jī)械配件項(xiàng)目可行性研究報(bào)告
- 縫紉初步知識(shí)培訓(xùn)課件
- 廣東省深圳市龍崗區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期英語(yǔ)期末試卷
- 輪船玻璃鋼接閃桿 CMCE電場(chǎng)補(bǔ)償避雷器 無(wú)源驅(qū)雷避雷針
- 輕紡城糧油冷鏈物流中心新建項(xiàng)目可行性研究報(bào)告寫作模板-備案審批
- 年產(chǎn)100萬(wàn)只高適配性大電流管式接頭智能化技改項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 北京2025年首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院招聘140人歷年參考題庫(kù)(頻考版)含答案解析
- 《工商管理專業(yè)畢業(yè)實(shí)習(xí)》課程教學(xué)大綱
- 2025年中國(guó)社區(qū)團(tuán)購(gòu)行業(yè)發(fā)展環(huán)境、運(yùn)行態(tài)勢(shì)及投資前景分析報(bào)告(智研咨詢發(fā)布)
- 國(guó)開電大本科《西方經(jīng)濟(jì)學(xué)(本)》網(wǎng)上形考(作業(yè)一至六)試題及答案
- 提高有風(fēng)險(xiǎn)患者預(yù)防跌倒墜床護(hù)理措施落實(shí)率品管圈PDCA案例匯報(bào)
- 2024年行政執(zhí)法人員執(zhí)法資格知識(shí)考試題庫(kù)(附含答案)
- 西那卡塞治療甲旁亢
- 無(wú)人駕駛 物流行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- AI技術(shù)打造智能客服機(jī)器人
- 油氣儲(chǔ)存企業(yè)安全風(fēng)險(xiǎn)評(píng)估指南(試行)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評(píng)論
0/150
提交評(píng)論