版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河北省承德實(shí)驗(yàn)中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.各項(xiàng)均為正數(shù)的等比數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.2.下列各式正確的是()A. B.C. D.3.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.4.在數(shù)列中,,,,則()A.2 B.C. D.15.在數(shù)列中,,則此數(shù)列最大項(xiàng)的值是()A.102 B.C. D.1086.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.7.已知圓,過(guò)點(diǎn)P的直線l被圓C所截,且截得最長(zhǎng)弦的長(zhǎng)度與最短弦的長(zhǎng)度比值為5∶4,若O為坐標(biāo)原點(diǎn),則最大值為()A.3 B.4C.5 D.68.某程序框圖如圖所示,該程序運(yùn)行后輸出的值是()A. B.C. D.9.已知在一次降雨過(guò)程中,某地降雨量(單位:mm)與時(shí)間t(單位:min)的函數(shù)關(guān)系可表示為,則在時(shí)的瞬時(shí)降雨強(qiáng)度為()mm/min.A. B.C.20 D.40010.為了解義務(wù)教育階段學(xué)校對(duì)雙減政策的落實(shí)程度,某市教育局從全市義務(wù)教育階段學(xué)校中隨機(jī)抽取了6所學(xué)校進(jìn)行問(wèn)卷調(diào)查,其中有4所小學(xué)和2所初級(jí)中學(xué),若從這6所學(xué)校中再隨機(jī)抽取兩所學(xué)校作進(jìn)一步調(diào)查,則抽取的這兩所學(xué)校中恰有一所小學(xué)的概率是()A. B.C. D.11.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.12.已知橢圓C:的一個(gè)焦點(diǎn)為(0,-2),則k的值為()A.5 B.3C.9 D.25二、填空題:本題共4小題,每小題5分,共20分。13.如圖,用四種不同的顏色分別給A,B,C,D四個(gè)區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法的種數(shù)為_(kāi)_____(用數(shù)字作答)14.若直線l經(jīng)過(guò)A(2,1),B(1,)兩點(diǎn),則l的斜率取值范圍為_(kāi)________________;其傾斜角的取值范圍為_(kāi)________________.15.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對(duì)任意實(shí)數(shù)都有,則不等式的解集為_(kāi)__________.16.已知直線與圓交于兩點(diǎn),則面積的最大值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項(xiàng)公式;(2)令求數(shù)列的前n項(xiàng)和;18.(12分)已知橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點(diǎn),為坐標(biāo)原點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn),求證:原點(diǎn)到直線的距離為定值,并求出該定值19.(12分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點(diǎn)M,且它們的斜率之積是.設(shè)點(diǎn)M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點(diǎn),圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點(diǎn)A,B.當(dāng),且滿足時(shí),求面積的取值范圍.20.(12分)如圖,已知平面,底面為正方形,,分別為的中點(diǎn)(1)求證:平面;(2)求與平面所成角的正弦值21.(12分)已知過(guò)拋物線的焦點(diǎn)F且斜率為1的直線l交C于A,B兩點(diǎn),且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點(diǎn)D為圓心且與直線l相切的圓的方程22.(10分)已知等差數(shù)列的前和為,數(shù)列是公比為2的等比數(shù)列,且,(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2)現(xiàn)由數(shù)列與按照下列方式構(gòu)造成新的數(shù)列①將數(shù)列中的項(xiàng)去掉數(shù)列中的項(xiàng),按原來(lái)的順序構(gòu)成新數(shù)列;②數(shù)列與中的所有項(xiàng)分別構(gòu)成集合與,將集合中的所有元素從小到大依次排列構(gòu)成一個(gè)新數(shù)列;在以上兩個(gè)條件中任選一個(gè)做為已知條件,求數(shù)列的前30項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)等比數(shù)列性質(zhì)可知,,,成等比數(shù)列,由等比中項(xiàng)特點(diǎn)可構(gòu)造方程求得,由等比數(shù)列通項(xiàng)公式可求得,進(jìn)而得到結(jié)果.【詳解】由等比數(shù)列的性質(zhì)可得:,,,成等比數(shù)列,則,即,解得:,,,解得:.故選:D.2、C【解析】利用導(dǎo)數(shù)的四則運(yùn)算即可求解.【詳解】對(duì)于A,,故A錯(cuò)誤;對(duì)于B,,故B錯(cuò)誤;對(duì)于C,,故C正確;對(duì)于D,,故D錯(cuò)誤;故選:C3、D【解析】對(duì)于A,兩邊平方得,由得,即為鈍角;對(duì)于B,由正弦定理求出,進(jìn)而求出,可得結(jié)果;對(duì)于C,根據(jù)平方關(guān)系將余弦化為正弦,用正弦定理可將角轉(zhuǎn)化為邊,進(jìn)而可得的值,從而作出判斷;對(duì)于D,由可得,推出,,,故可知三個(gè)內(nèi)角均為銳角【詳解】解:對(duì)于A,由,兩邊平方整理得,,因?yàn)?,所以,所以,所以,所以為鈍角三角形,故A不正確;對(duì)于B,由,得,所以,因?yàn)椋?,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對(duì)于C,因?yàn)?,所以,即,由正弦定理得,由余弦定理得,因?yàn)?,所以,故三角形為鈍角三角形,C不正確;對(duì)于D,由可得,因?yàn)橹凶疃嘀挥幸粋€(gè)鈍角,所以,,中最多只有一個(gè)為負(fù)數(shù),所以,,,所以中三個(gè)內(nèi)角都為銳角,所以為銳角三角形,故D正確;故選:D4、A【解析】根據(jù)題中條件,逐項(xiàng)計(jì)算,即可得出結(jié)果.【詳解】因?yàn)?,,,所以,因?故選:A.5、D【解析】將將看作一個(gè)二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個(gè)二次函數(shù),其對(duì)稱軸為,開(kāi)口向下,因?yàn)?,所以?dāng)時(shí),取得最大值,故選:D6、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B7、C【解析】由題意,點(diǎn)P在圓C內(nèi),且最長(zhǎng)弦的長(zhǎng)度為直徑長(zhǎng)10,則最短弦的長(zhǎng)度為8,進(jìn)而可得,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因?yàn)檫^(guò)點(diǎn)P的直線l被圓C所截,且截得最長(zhǎng)弦的長(zhǎng)度與最短弦的長(zhǎng)度比值為5∶4,所以點(diǎn)P在圓C內(nèi),且最長(zhǎng)弦的長(zhǎng)度為直徑長(zhǎng)10,則最短弦的長(zhǎng)度為8,所以由弦長(zhǎng)公式有,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.8、B【解析】模擬程序運(yùn)行后,可得到輸出結(jié)果,利用裂項(xiàng)相消法即可求出答案.【詳解】模擬程序運(yùn)行過(guò)程如下:0),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),1),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),2),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),3),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),……9),判斷為否,進(jìn)入循環(huán)結(jié)構(gòu),10),判斷為是,故輸出,故選:B.【點(diǎn)睛】本題主要考查程序框圖,考查裂項(xiàng)相消法,難度不大.一般遇見(jiàn)程序框圖求輸出結(jié)果時(shí),常模擬程序運(yùn)行以得到結(jié)論.9、B【解析】對(duì)題設(shè)函數(shù)求導(dǎo),再求時(shí)對(duì)應(yīng)的導(dǎo)數(shù)值,即可得答案.【詳解】由題設(shè),,則,所以在時(shí)的瞬時(shí)降雨強(qiáng)度為mm/min.故選:B10、A【解析】由組合知識(shí)結(jié)合古典概型概率公式求解即可.【詳解】從這6所學(xué)校中隨機(jī)抽取兩所學(xué)校的情況共有種,這兩所學(xué)校中恰有一所小學(xué)的情況共有種,則其概率為.故選:A11、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因?yàn)橹本€:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B12、A【解析】由題意可得焦點(diǎn)在軸上,由,可得k的值.【詳解】∵橢圓的一個(gè)焦點(diǎn)是,∴,∴,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】由已知按區(qū)域分四步,然后給,,,區(qū)域分步選擇顏色,由此即可求解【詳解】解:由已知按區(qū)域分四步:第一步區(qū)域有4種選擇,第二步區(qū)域有3種選擇,第三步區(qū)域有2種選擇,第四步區(qū)域也有2種選擇,則由分步計(jì)數(shù)原理可得共有種,故答案為:4814、①.②.【解析】根據(jù)直線l經(jīng)過(guò)A(2,1),B(1,)兩點(diǎn),利用斜率公式,結(jié)合二次函數(shù)性質(zhì)求解;設(shè)其傾斜角為,,利用正切函數(shù)的性質(zhì)求解.【詳解】因?yàn)橹本€l經(jīng)過(guò)A(2,1),B(1,)兩點(diǎn),所以l的斜率為,所以l的斜率取值范圍為,設(shè)其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,15、【解析】令則,∴在R上是減函數(shù)又等價(jià)于∴故不等式的解集是答案:點(diǎn)睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過(guò)構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時(shí)要注意常見(jiàn)的函數(shù)類(lèi)型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對(duì)于,可構(gòu)造函數(shù);(2)對(duì)于,可構(gòu)造函數(shù)16、##【解析】先求出的范圍,再利用面積公式可求面積的最大值.【詳解】圓即為,直線為過(guò)原點(diǎn)的直線,如圖,連接,故,解得,此時(shí),故的面積為,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)即,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項(xiàng)公式得到,根據(jù)通項(xiàng)公式的求法得到結(jié)果;(2)分組求和即可.【小問(wèn)1詳解】設(shè)的公差為,由已知,有解得,所以的通項(xiàng)公式為,的通項(xiàng)公式為.【小問(wèn)2詳解】,分組求和,分別根據(jù)等比數(shù)列求和公式與等差數(shù)列求和公式得到:.18、(1)(2)證明見(jiàn)解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡(jiǎn)得到,代入計(jì)算得到答案.【小問(wèn)1詳解】橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為,故,,故橢圓方程為.【小問(wèn)2詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過(guò)原點(diǎn),故,即,即,化簡(jiǎn)整理得到:,原點(diǎn)到直線的距離為.當(dāng)直線斜率不存在時(shí),為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點(diǎn)的距離為.綜上所述:原點(diǎn)到直線的距離為定值.【點(diǎn)睛】本題考查了橢圓方程,橢圓中的定值問(wèn)題,意在考查學(xué)生的計(jì)算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過(guò)原點(diǎn)轉(zhuǎn)化為是解題的關(guān)鍵.19、(1)(2)【解析】【小問(wèn)1詳解】設(shè)點(diǎn),則,整理得曲線的方程:【小問(wèn)2詳解】因?yàn)閳A的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因?yàn)?,令,在上單調(diào)減,,所以20、(1)證明見(jiàn)解析;(2).【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)利用直線的方向向量,平面的法向量,計(jì)算線面角的正弦值.【詳解】(1)以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,則.,,所以,由于,所以平面.(2),,設(shè)平面的法向量為,則,令,則,所以.設(shè)直線與平面所成角為,則.21、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點(diǎn)弦公式計(jì)算可得;(2)由(1)可得,再利用點(diǎn)到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點(diǎn),∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.22、(1),(2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版電器防爆技術(shù)協(xié)議書(shū)
- 2024年軟件著作權(quán)許可使用與授權(quán)合同
- 六年級(jí)《各具特色的民居》課件
- 智能家居家庭健康監(jiān)測(cè)系統(tǒng)開(kāi)發(fā)合同
- 升華集團(tuán)人事招聘流程
- 臨床其它標(biāo)本檢驗(yàn)
- 光伏發(fā)電項(xiàng)目全流程管理合作協(xié)議
- 智能停車(chē)場(chǎng)系統(tǒng)技術(shù)服務(wù)合同
- 2025年華東師大版八年級(jí)生物上冊(cè)階段測(cè)試試卷
- 2025年魯教版七年級(jí)科學(xué)下冊(cè)月考試卷含答案
- 管理后臺(tái)策劃方案
- 現(xiàn)代物業(yè)服務(wù)體系實(shí)操系列物業(yè)服務(wù)溝通與投訴解決指南
- 人防、物防、技防工作措施
- 市場(chǎng)部培訓(xùn)課程課件
- 八年級(jí)歷史上冊(cè)論述題匯總
- 資產(chǎn)評(píng)估學(xué)教程(第八版)習(xí)題及答案 喬志敏
- 提高留置針規(guī)范使用率
- 垃圾清運(yùn)服務(wù)投標(biāo)方案(技術(shù)方案)
- 《民俗旅游學(xué)》教學(xué)大綱(含課程思政元素)
- 人教版小學(xué)三年級(jí)上學(xué)期期末數(shù)學(xué)試卷(及答案)
- 2021年學(xué)校意識(shí)形態(tài)工作總結(jié)
評(píng)論
0/150
提交評(píng)論