版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省青島39中重點達標名校2024屆中考數(shù)學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.函數(shù)y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠32.下列四個實數(shù)中是無理數(shù)的是()A.2.5B.1033.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x4.平面直角坐標系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.-5的相反數(shù)是()A.5 B. C. D.6.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=37.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互贈了132件.如果全組共有x名同學,則根據(jù)題意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132× D.x(x-1)=132×28.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.9.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°10.的算術平方根是()A.4 B.±4 C.2 D.±2二、填空題(共7小題,每小題3分,滿分21分)11.若關于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.12.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設=,=,那么等于__(結果用、的線性組合表示).13.拋物線y=(x+1)2-2的頂點坐標是______.14.點A(-2,1)在第_______象限.15.a(chǎn)(a+b)﹣b(a+b)=_____.16.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______17.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.三、解答題(共7小題,滿分69分)18.(10分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?19.(5分)如圖,某校準備給長12米,寬8米的矩形室內(nèi)場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設米.甲乙丙單價(元/米2)(1)當時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設丙款白色瓷磚,①在相同光照條件下,當場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.20.(8分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.21.(10分)已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長;②拋物線與的“完美三角形”的斜邊長的數(shù)量關系是;(2)若拋物線的“完美三角形”的斜邊長為4,求a的值;(3)若拋物線的“完美三角形”斜邊長為n,且的最大值為-1,求m,n的值.22.(10分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調(diào)查了若干名中學生,根據(jù)調(diào)查結果制作統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:(1)本次接受隨機抽樣調(diào)查的中學生人數(shù)為_______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).23.(12分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總人數(shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?24.(14分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.2、C【解析】本題主要考查了無理數(shù)的定義.根據(jù)無理數(shù)的定義:無限不循環(huán)小數(shù)是無理數(shù)即可求解.解:A、2.5是有理數(shù),故選項錯誤;B、103C、π是無理數(shù),故選項正確;D、1.414是有理數(shù),故選項錯誤.故選C.3、D【解析】
本題主要考查二次函數(shù)的解析式【詳解】解:根據(jù)二次函數(shù)的解析式形式可得,設頂點坐標為(h,k),則二次函數(shù)的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數(shù)的頂點式,根據(jù)頂點的平移可得到二次函數(shù)平移后的解析式.4、D【解析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎題型.明確各象限中點的橫縱坐標的正負性是解題的關鍵.5、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.6、B【解析】
觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.【點睛】本題考查的知識點是解分式方程,解題關鍵是注意解得的解要進行檢驗.7、B【解析】全組有x名同學,則每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,所以,x(x-1)=132,故選B.8、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關鍵.9、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B10、C【解析】
先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、﹣1【解析】
根據(jù)一元二次方程的解的定義把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=?1,然后利用整體代入的方法進行計算.【詳解】∵1(n≠0)是關于x的一元二次方程x1+mx+1n=0的一個根,∴4+1m+1n=0,∴n+m=?1,故答案為?1.【點睛】本題考查了一元二次方程的解(根):能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.12、【解析】
根據(jù)三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.13、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據(jù)頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數(shù)的性質(zhì).14、二【解析】
根據(jù)點在第二象限的坐標特點解答即可.【詳解】∵點A的橫坐標-2<0,縱坐標1>0,∴點A在第二象限內(nèi).故答案為:二.【點睛】本題主要考查了平面直角坐標系中各個象限的點的坐標的符號特點:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15、(a+b)(a﹣b).【解析】
先確定公因式為(a+b),然后提取公因式后整理即可.【詳解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.16、5或【解析】分析:由菱形的性質(zhì)證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質(zhì),注意分類討論思想在數(shù)學中的應用,不要漏解.17、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結果是x≥3,y=1.三、解答題(共7小題,滿分69分)18、(1)L1表示汽車B到甲地的距離與行駛時間的關系;(2)汽車B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小時后,兩車相距30千米;(5)行駛132分鐘,A、B兩車相遇.【解析】試題分析:(1)直接根據(jù)函數(shù)圖象的走向和題意可知L1表示汽車B到甲地的距離與行駛時間的關系;
(2)由L1上60分鐘處點的坐標可知路程和時間,從而求得速度;
(3)先分別設出函數(shù),利用函數(shù)圖象上的已知點,使用待定系數(shù)法可求得函數(shù)解析式;
(4)結合(3)中函數(shù)圖象求得時s的值,做差即可求解;
(5)求出函數(shù)圖象的交點坐標即可求解.試題解析:(1)函數(shù)圖形可知汽車B是由乙地開往甲地,故L1表示汽車B到甲地的距離與行駛時間的關系;(2)(330﹣240)÷60=1.5(千米/分);(3)設L1為把點(0,330),(60,240)代入得所以設L2為把點(60,60)代入得所以(4)當時,330﹣150﹣120=60(千米);所以2小時后,兩車相距60千米;(5)當時,解得即行駛132分鐘,A、B兩車相遇.19、(1)8m2;(2)68m2;(3)40,8【解析】
(1)根據(jù)中心對稱圖形性質(zhì)和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數(shù)式表示出費用,因為m,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數(shù),解得m=40,n=8.【點睛】本題考查中心對稱圖形性質(zhì),菱形、直角三角形的面積計算,二次函數(shù)的最值問題,解題關鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.20、576名【解析】試題分析:根據(jù)統(tǒng)計圖可以求得本次調(diào)查的人數(shù)和體重落在B組的人數(shù),從而可以將條形統(tǒng)計圖補充完整,進而可以求得我校初三年級體重介于47kg至53kg的學生大約有多少名.試題解析:本次調(diào)查的學生有:32÷16%=200(名),體重在B組的學生有:200﹣16﹣48﹣40﹣32=64(名),補全的條形統(tǒng)計圖如右圖所示,我校初三年級體重介于47kg至53kg的學生大約有:1800×=576(名),答:我校初三年級體重介于47kg至53kg的學生大約有576名.21、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,設出點B的坐標為(n,-n),根據(jù)二次函數(shù)得出n的值,然后得出AB的值,②因為拋物線y=x2+1與y=x2的形狀相同,所以拋物線y=x2+1與y=x2的“完美三角形”的斜邊長的數(shù)量關系是相等;(2)根據(jù)拋物線的性質(zhì)相同得出拋物線的完美三角形全等,從而得出點B的坐標,得出a的值;根據(jù)最大值得出mn-4m-1=0,根據(jù)拋物線的完美三角形的斜邊長為n得出點B的坐標,然后代入拋物線求出m和n的值.(3)根據(jù)的最大值為-1,得到化簡得mn-4m-1=0,拋物線的“完美三角形”斜邊長為n,所以拋物線2的“完美三角形”斜邊長為n,得出B點坐標,代入可得mn關系式,即可求出m、n的值.【詳解】(1)①過點B作BN⊥x軸于N,由題意可知△AMB為等腰直角三角形,AB∥x軸,易證MN=BN,設B點坐標為(n,-n),代入拋物線,得,∴,(舍去),∴拋物線的“完美三角形”的斜邊②相等;(2)∵拋物線與拋物線的形狀相同,∴拋物線與拋物線的“完美三角形”全等,∵拋物線的“完美三角形”斜邊的長為4,∴拋物線的“完美三角形”斜邊的長為4,∴B點坐標為(2,2)或(2,-2),∴.(3)∵的最大值為-1,∴,∴,∵拋物線的“完美三角形”斜邊長為n,∴拋物線的“完美三角形”斜邊長為n,∴B點坐標為,∴代入拋物線,得,∴(不合題意舍去),∴,∴22、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】
(1)根據(jù)題意,本次接受調(diào)查的學生總人數(shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數(shù)”的概率乘以全??側藬?shù)求解即可.【詳解】(1)本次接受隨機抽樣調(diào)查的中學生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數(shù)約為250000×=160000人.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表.23、(1)80,20,72;(2)16,補圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總人數(shù),再用總人數(shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總人數(shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《域名品牌保護介紹》課件
- 《吆喝課件》課件
- 電力電工基礎習題庫含答案
- 養(yǎng)老院老人生活設施管理制度
- 養(yǎng)老院老人財產(chǎn)保管制度
- 《皮內(nèi)針刺法》課件
- 旅客運輸合同(2篇)
- 2024全新生物制品檢測與質(zhì)量保證合同2篇
- 電器課件-交流發(fā)電機
- 2025年廣東貨運從業(yè)資格仿真考題
- DB2101T 0108-2024 工程建設招標代理機構公共信用綜合評價規(guī)范
- Python課程第二階段第十三課:列表元素的查找和刪除-Python教學設計
- 學術研究倫理審查申請范本
- 中國紅色文化精神智慧樹知到答案2024年西安交通大學
- 醫(yī)院門診排班與號源管理制度
- 智能算力數(shù)據(jù)中心安全性與數(shù)據(jù)隱私保護分析
- 2022-2023學年貴陽市數(shù)學九年級第一學期期末聯(lián)考試題含解析
- 涼山彝族自治州2022-2023學年七年級上學期期末地理試題
- 2025年日歷臺歷中文版縱向排版帶節(jié)假日調(diào)休周日開始
- 污水處理站操作人員安全培訓手冊
- 健康管理實務考試題+參考答案
評論
0/150
提交評論