2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題含解析_第1頁
2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題含解析_第2頁
2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題含解析_第3頁
2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題含解析_第4頁
2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省茂名市五大聯(lián)盟學校數學高二上期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與拋物線的準線相切,則實數p的值為()A.2 B.6C.3或8 D.2或62.已知拋物線內一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.3.如圖,某圓錐的軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.4.已知向量與向量垂直,則實數x的值為()A.﹣1 B.1C.﹣6 D.65.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或6.復數的共軛復數的虛部為()A. B.C. D.7.已知,,則下列結論一定成立的是()A. B.C. D.8.直線被圓截得的弦長為()A.1 B.C.2 D.39.某綜合實踐小組設計了一個“雙曲線型花瓶”.他們的設計思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉一周,得到花瓶的側面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關數據:,,,,,其中B是雙曲線的一個頂點.小組中甲、乙、丙、丁四位同學分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結果如下表所示學生甲乙丙丁估算結果()其中估算結果最接近花瓶的容積的同學是()(參考公式:,,)A.甲 B.乙C.丙 D.丁10.某種產品的廣告費支出與銷售額(單位:萬元)之間的關系如下表:245683040605070若已知與的線性回歸方程為,那么當廣告費支出為5萬元時,隨機誤差的效應(殘差)為萬元(殘差=真實值-預測值)A.40 B.30C.20 D.1011.已知是直線的方向向量,為平面的法向量,若,則的值為()A. B.C.4 D.12.已知,則的大小關系為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某部門計劃對某路段進行限速,為調查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數據按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.14.已知點是拋物線的焦點,點分別是拋物線上位于第一、四象限的點,若,則的面積為__________.15.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.16.兩姐妹同時推銷某一商品,現(xiàn)抽取他們其中8天的銷售量(單位:臺),得到的莖葉圖如圖所示,已知妹妹的銷售量的平均數為14,姐姐的銷售量的中位數比妹妹的銷售量的眾數大2,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三角形內角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.18.(12分)已知點,(1)若過點P作的切線只有一條,求實數的值及切線方程;(2)過點P作斜率為1的直線l與相交于M,N兩點,當面積最大時,求實數的值19.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實數a的取值范圍.20.(12分)如圖所示,圓錐的高,底面圓的半徑為,延長直徑到點,使得,分別過點、作底面圓的切線,兩切線相交于點,點是切線與圓的切點(1)證明:平面;(2)若平面與平面所成銳二面角的余弦值為,求該圓錐的體積21.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.22.(10分)已知在等差數列中,,(1)求的通項公式;(2)若,求數列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由拋物線準線與圓相切,結合拋物線方程,令求切線方程且拋物線準線方程為,即可求參數p.【詳解】圓的標準方程為:,故當時,有或,所以或,得或6故選:D2、B【解析】利用點差法求出直線斜率,即可得出直線方程.【詳解】設,則,兩式相減得,即,則直線方程為,即.故選:B.3、C【解析】建立空間直角坐標系,分別得到,然后根據空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標系.不妨設,則根據題意可得,,,,所以,,設異面直線與所成角為,則.故選:C.4、B【解析】根據數量積的坐標計算公式代入可得的值【詳解】解:向量,與向量垂直,則,由數量積的坐標公式可得:,解得,故選:【點睛】本題考查空間向量的坐標運算,以及數量積的坐標公式,屬于基礎題5、D【解析】根據雙曲線標準方程與漸近線的關系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.6、B【解析】先根據復數除法與加法運算求解得,再求共軛復數及其虛部.【詳解】解:,所以其共軛復數為,其虛部為故選:B7、B【解析】根據不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.8、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.9、D【解析】根據幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對幾何體的體積進行估計即可.【詳解】可將幾何體看作一個以為半徑,高為的圓柱,再加上兩個曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學的估算,故選:D10、D【解析】分析:把所給的廣告費支出5萬元時,代入線性回歸方程,做出相應的銷售額,這是一個預測值,再求出與真實值之間有一個誤差即得.詳解:與的線性回歸方程為,當時,50,當廣告費支出5萬元時,由表格得:,故隨機誤差的效應(殘差)為萬元.故選D.點睛:本題考查回歸分析的初步應用,考查求線性回歸方程,考查預測y的值,是一個綜合題11、A【解析】由,可得,再計算即可求解.【詳解】由題意可知,所以,即.故選:A12、B【解析】構造利用導數判斷函數在上單調遞減,利用單調性比較大小【詳解】設恒成立,函數在上單調遞減,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據個小矩形面積之和為1即可求出的值;根據頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;14、42【解析】由焦半徑公式求得參數,得拋物線方程,從而可求得兩點縱坐標,再求得直線與軸的交點坐標后可得面積【詳解】因為,所以,拋物線的方程為,把代入方程,得(舍去),即.同理,直線方程為,即.所以直線與軸交于點,所以.故答案為:4215、①.②.【解析】根據切線的相關性質將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設,則圓心為,半徑為,則該圓方程為,整理可得,聯(lián)立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.16、13【解析】先根據妹妹的銷售量的平均數為14,求得y,進而得到其眾數,然后再根據姐姐的銷售量的中位數比妹妹的銷售量的眾數大2,得到姐姐的銷售量的中位數.【詳解】因為妹妹的銷售量的平均數為14,所以,解得,由莖葉圖知:妹妹的銷售量的眾數是14,因為姐姐的銷售量的中位數比妹妹的銷售量的眾數大2,所以姐姐的銷售量的中位數是16,所以,解得,所以,故答案為:13三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=18、(1);當時,切線方程為;當時,切線方程為;(2)或【解析】(1)根據題意可知P在圓上,據此即可求t和切線方程;(2)的面積,則當面積最大時,.即,據此即可求出圓心O到直線l的距離,即可求出t的數值.【小問1詳解】由題意得點在上,∴,,①當時,切點,直線OP的斜率,切線斜率,切線方程為,即②當時,切點,直線OP的斜率,切線斜率,切線方程,即【小問2詳解】∵的面積,則當面積最大時,.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設圓心O到直線l的距離為d,則的面積,當且僅當,即時取等號(下同)19、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定義,B集合解不等式即可,然后由交集定義即可得結論;(2)若“”是“”的必要不充分條件,說明且,然后根據集合關系求解.詳解:(1),.則(2),因為“”是“”的必要不充分條件,所以且.由,得,解得.經檢驗,當時,成立,故實數的取值范圍是.點睛:考查定義域,解不等式,交集的定義以及必要不充分條件,正確求解集合,縷清集合間的基本關系是解題關鍵,屬于基礎題.20、(1)證明見解析;(2).【解析】(1)由線面垂直、切線的性質可得、,再根據線面垂直的判定即可證結論.(2)若,構建為原點,、、為x、y、z軸的空間直角坐標系,求面、面的法向量,利用空間向量夾角的坐標表示及其對應的余弦值求R,最后由圓錐的體積公式求體積.【小問1詳解】由題設,底面圓,又是切線與圓的切點,∴底面圓,則,且,而,∴平面.【小問2詳解】由題設,若,可構建為原點,、、為x、y、z軸的空間直角坐標系,又,可得,∴,,,有,,若是面的一個法向量,則,令,則,又面的一個法向量為,∴,可得,∴該圓錐的體積21、(1)證明見解析(2)【解析】(1)由圓的性質可得,再由線面垂直的性質可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結合已知條件可得平面PBC,由線面垂直的性質可得結論;(2)由已知條件結合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當且僅當“”時等號成立).所以當三棱錐的體積最大時,是等腰直角三角形,.所以以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論