2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題含解析_第1頁
2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題含解析_第2頁
2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題含解析_第3頁
2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題含解析_第4頁
2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆寧夏銀川市興慶區(qū)長慶高中高一上數(shù)學期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于任意的實數(shù),定義表示不超過的最大整數(shù),例如,,,那么“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知全集U=R,集合,,則集合()A. B.C. D.3.基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天4.函數(shù)的圖象可能是A. B.C. D.5.函數(shù)零點所在的大致區(qū)間的A. B.C. D.6.已知函數(shù),,則函數(shù)的值域為()A. B.C. D.7.已知數(shù)列是首項,公比的等比數(shù)列,且,,成等差數(shù)列,則公比等于()A. B.C. D.8.已知,,,則a、b、c的大小關系是()A. B.C. D.9.下列函數(shù)中,最小正周期為,且圖象關于直線對稱的是A. B.C. D.10.王安石在《游褒禪山記》中寫道“世之奇?zhèn)?、瑰怪,非常之觀,常在于險遠,而人之所罕至焉,故非有志者不能至也”,請問“有志”是到達“奇?zhèn)?、瑰怪,非常之觀”的A.充要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的零點為_________________.12.若直線與互相垂直,則點到軸的距離為__________13.已知扇形弧長為20cm,圓心角為,則該扇形的面積為___________.14.如果直線與直線互相垂直,則實數(shù)__________15.若兩個正實數(shù),滿足,且不等式恒成立,則實數(shù)的取值范圍是__________16.設當時,函數(shù)取得最大值,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的對稱中心;(2)當時,求函數(shù)的值域18.已知函數(shù)在區(qū)間上單調,當時,取得最大值5,當時,取得最小值-1.(1)求的解析式(2)當時,函數(shù)有8個零點,求實數(shù)的取值范圍19.計算求解(1)(2)已知,,求的值20.已知函數(shù)在一個周期內的圖像經(jīng)過點和點,且的圖像有一條對稱軸為.(1)求的解析式及最小正周期;(2)求的單調遞增區(qū)間.21.已知函數(shù)(1)求函數(shù)的單調遞增區(qū)間;(2)若,求函數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)充分必要性分別判斷即可.【詳解】若,則可設,則,,其中,,,即“”能推出“”;反之,若,,滿足,但,,即“”推不出“”,所以“”是“”必要不充分條件,故選:B.2、D【解析】依次計算集合,最后得出結果即可.【詳解】,,或,故.故選:D.3、B【解析】根據(jù)題意可得,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結果.【詳解】因為,,,所以,所以,設在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應用,考查了指數(shù)式化對數(shù)式,屬于基礎題.4、C【解析】函數(shù)即為對數(shù)函數(shù),圖象類似的圖象,位于軸的右側,恒過,故選:5、B【解析】函數(shù)是單調遞增函數(shù),則只需時,函數(shù)在區(qū)間(a,b)上存在零點.【詳解】函數(shù),x>0上單調遞增,,函數(shù)f(x)零點所在的大致區(qū)間是;故選B【點睛】本題考查利用函數(shù)零點存在性定義定理求解函數(shù)的零點的范圍,屬于基礎題;解題的關鍵是首先要判斷函數(shù)的單調性,再根據(jù)零點存在的條件:已知函數(shù)在(a,b)連續(xù),若確定零點所在的區(qū)間.6、B【解析】根據(jù)給定條件換元,借助二次函數(shù)在閉區(qū)間上的最值即可作答.【詳解】依題意,函數(shù),,令,則在上單調遞增,即,于是有,當時,,此時,,當時,,此時,,所以函數(shù)的值域為.故選:B7、A【解析】由等差數(shù)列性質得,由此利用等比數(shù)列通項公式能求出公比【詳解】數(shù)列是首項,公比的等比數(shù)列,且,,成等差數(shù)列,,,解得(舍或故選A【點睛】本題考查等比數(shù)列的公比的求法,是基礎題,解題時要認真審題,注意等差數(shù)列和等比數(shù)列的性質的合理運用8、D【解析】借助中間量比較即可.詳解】解:根據(jù)題意,,,,所以故選:D9、B【解析】因為函數(shù)的最小正周期是,故先排除選項D;又對于選項C:,對于選項A:,故A、C均被排除,應選B.10、D【解析】根據(jù)題意“非有志者不能至也”可知到達“奇?zhèn)?、瑰怪,非常之觀”必是有志之士,故“有志”是到達“奇?zhèn)ァ⒐骞郑浅V^”的必要條件,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】解方程即可.【詳解】令,可得,所以函數(shù)的零點為.故答案為:.【點睛】本題主要考查求函數(shù)的零點,屬基礎題.12、或.【解析】分析:由題意首先求得實數(shù)m的值,然后求解距離即可.詳解:由直線垂直的充分必要條件可得:,即:,解得:,,當時點到軸的距離為0,當時點到軸的距離為5,綜上可得:點到軸的距離為或.點睛:本題主要考查直線垂直的充分必要條件,分類討論的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.13、【解析】求出扇形的半徑后,利用扇形的面積公式可求得結果.【詳解】由已知得弧長,,所以該扇形半徑,所以該扇形的面積.故答案為:14、或2【解析】分別對兩條直線的斜率存在和不存在進行討論,利用兩條直線互相垂直的充要條件,得到關于的方程可求得結果【詳解】設直線為直線;直線為直線,①當直線率不存在時,即,時,直線的斜率為0,故直線與直線互相垂直,所以時兩直線互相垂直②當直線和斜率都存在時,,要使兩直線互相垂直,即讓兩直線的斜率相乘為,故③當直線斜率不存在時,顯然兩直線不垂直,綜上所述:或,故答案為或.【點睛】本題主要考查兩直線垂直的充要條件,若利用斜率之積等于,應注意斜率不存在的情況,屬于中檔題.15、【解析】根據(jù)題意,只要即可,再根據(jù)基本不等式中的“”的妙用,求得,解不等式即可得解.【詳解】根據(jù)題意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案為:16、【解析】利用輔助角公式化簡函數(shù)解析式,再根據(jù)最值情況可得解.【詳解】由輔助角公式可知,,,,當,時取最大值,即,,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)化簡函數(shù),結合三角函數(shù)的圖象與性質,即可求解;(2)由,可得,結合三角函數(shù)的圖象與性質,即可求解;【小問1詳解】解:由題意,函數(shù),令,解得,所以函數(shù)的對稱中心為.【小問2詳解】解:因為,可得,當時,即時,可得;當時,即時,可得,所以函數(shù)的值域為18、(1);(2).【解析】(1)由函數(shù)的最大值和最小值求出,由周期求出ω,由特殊點的坐標出φ的值,可得函數(shù)的解析式(2)等價于時,方程有個不同的解.即與有個不同交點,畫圖數(shù)形結合即可解得【詳解】(1)由題知,..又,即,的解析式為.(2)當時,函數(shù)有個零點,等價于時,方程有個不同的解.即與有個不同交點.由圖知必有,即.實數(shù)的取值范圍是.【點睛】已知函數(shù)有零點求參數(shù)常用的方法和思路:(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成函數(shù)的值域問題解決;(3)數(shù)形結合法:先對解析式變形,在同一個平面直角坐標系中,畫出函數(shù)的圖像,然后數(shù)形結合求解.19、(1);(2).【解析】(1)利用對數(shù)運算法則直接計算作答.(2)利用對數(shù)換底公式及對數(shù)運算法則計算作答.【小問1詳解】.【小問2詳解】因,,所以.20、(1),;(2).【解析】(1)由函數(shù)圖象經(jīng)過點且f(x)的圖象有一條對稱軸為直線,可得最大值A,且能得周期并求得ω,由五點法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調性求得f(x)的單調遞增區(qū)間【詳解】(1)函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,)在一個周期內的圖象經(jīng)過點,,且f(x)的圖象有一條對稱軸為直線,故最大值A=4,且,∴,∴ω=3所以.因為的圖象經(jīng)過點,所以,所以,.因為,所以,所以.(2)因為,所以,,所以,,即的單調遞增區(qū)間為.【點睛】本題主要考查由函數(shù)y=Asin(ωx+)的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論