安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省滁州市二中2025屆高二數(shù)學第一學期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓的方程為,則實數(shù)m的取值范圍是()A. B.C. D.2.已知公差不為0的等差數(shù)列中,(m,),則mn的最大值為()A.6 B.12C.36 D.483.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.4.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.5.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.6.如果雙曲線的一條漸近線方程為,且經(jīng)過點,則雙曲線的標準方程是()A. B.C. D.7.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.08.在三棱錐中,,,,若,,則()A. B.C. D.9.若等差數(shù)列,其前n項和為,,,則()A.10 B.12C.14 D.1610.已知,,且,則向量與的夾角為()A. B.C. D.11.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.113412.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)滿足:①是奇函數(shù);②當時,.寫出一個滿足條件的函數(shù)________14.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________15.已知,,若,則_________.16.若圓與圓相交,則的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.18.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關(guān)于軸對稱時的面積是否達到最大?并說明理由.19.(12分)公差不為零的等差數(shù)列中,已知其前n項和為,若,且成等比數(shù)列(1)求數(shù)列的通項;(2)當時,求數(shù)列的前n和20.(12分)如圖,在四棱錐中,,為的中點,連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.21.(12分)設(shè),分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說明理由.22.(10分)設(shè):實數(shù)滿足,:實數(shù)滿足.(1)若,且為真,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)可求得結(jié)果.【詳解】因為表示圓,所以,解得.故選:C【點睛】關(guān)鍵點點睛:掌握方程表示圓的條件是解題關(guān)鍵.2、C【解析】由等差數(shù)列的性質(zhì)可得,再應(yīng)用基本不等式求mn的最大值,注意等號成立條件.【詳解】由題設(shè)及等差數(shù)列的性質(zhì)知:,又m,,所以,即,當且僅當時等號成立.所以mn的最大值為.故選:C3、D【解析】求導后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.4、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.5、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據(jù)復合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復合命題真假的判斷,屬于基礎(chǔ)題.6、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點代入,進而求得答案.【詳解】因為雙曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.7、B【解析】對結(jié)論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結(jié)論為2個故選:B8、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結(jié)果.【詳解】連接,因為,所以,因為,所以,所以,故選:B9、B【解析】由等差數(shù)列前項和的性質(zhì)計算即可.【詳解】由等差數(shù)列前項和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.10、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.11、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.12、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計算公式,計算出所求的概率.【詳解】設(shè)正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當時,,則符合上述兩個條件,故答案為:(答案不唯一).14、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.15、【解析】由題意,,利用向量數(shù)量積的坐標運算可得,然后利用定積分性質(zhì)可得,原式,最后利用微積分基本定理計算,,利用定積分的幾何意義計算,即可得答案.【詳解】解:因為,,且,所以,解得,所以====.故答案為:.16、【解析】根據(jù)圓心距小于兩半徑之和,大于兩半徑之差的絕對值列出不等式解出即可.【詳解】圓的圓心為原點,半徑為,圓,即的圓心為,半徑為,由于兩圓相交,故,即,解得,即的取值范圍是,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點,分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設(shè)平面的法向量為=(x,y,z),則,取z=1,得平面的一個法向量=(,1,1),設(shè)平面FBA的法向量為=(a,b,c),則取b=1,得平面FBA的一個法向量為=(-,1,0),∴設(shè)平面ABD與平面的夾角為θ,則∴平面ABD與平面夾角的余弦值為.【小問2詳解】假設(shè)在線段AD上存在M(x,y,z),使得平面,設(shè)(0≤λ≤1),則(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一個法向量由∥,得,此方程無解.∴線段AD上不存點M,使得平面.18、(1);(2);(3)當點與點關(guān)于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設(shè),可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結(jié)合韋達定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當點與點關(guān)于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的性質(zhì),結(jié)合題意,可求得值,根據(jù)成等比數(shù)列,即可求得d值,代入等差數(shù)列通項公式,即可得答案;(2)由(1)可求得,即可得表達式,根據(jù)裂項相消求和法,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由等差數(shù)列性質(zhì)可得,解得,又成等比數(shù)列,所以,整理得,因為,所以,所以【小問2詳解】由(1)可得,則,所以,所以20、(1)證明過程見解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進行證明即可;(2)利用空間向量夾角公式進行求解即可.【小問1詳解】因為為的中點,所以,而,所以四邊形是平行四邊形,因此,因為,,為的中點,所以,,而,因為,所以,而平面,所以平面;【小問2詳解】根據(jù)(1),建立如圖所示的空間直角坐標系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.21、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設(shè)直線的方程為,聯(lián)立直線的方程與橢圓方程化簡可得,設(shè),,可得,,由此證明,再證明當直線的斜率不存在時也成立,由此確定存在實數(shù)t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當直線l的斜率存在時,設(shè),,,聯(lián)立方程組得,,所以,..,,所以.所以.當直線l的斜率不存在時,,聯(lián)立方程組,得,.,,所以.綜上,存在實數(shù)使得恒成立.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論