2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆四川省普通高中高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)a,b,c滿足,,則a,b,c的大小關(guān)系為()A. B.C. D.2.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個(gè)值的概率相同,若,則n的值為()A.4 B.6C.9 D.103.若則()A.?2 B.?1C.1 D.24.不等式表示的平面區(qū)域是一個(gè)()A.三角形 B.直角三角形C.矩形 D.梯形5.某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率如下:排隊(duì)人數(shù)01234概率0.10.16030.30.10.04則至少有兩人排隊(duì)的概率為()A.0.16 B.0.26C.0.56 D.0.746.已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線上的任意一點(diǎn),為平面上點(diǎn),則的最小值為A.3 B.2C.4 D.7.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來(lái)需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來(lái)實(shí)現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個(gè)數(shù)是()①曲線C關(guān)于點(diǎn)(0,0)對(duì)稱;②曲線C關(guān)于直線y=x對(duì)稱;③曲線C的面積超過4π.A.0 B.1C.2 D.38.函數(shù)在上的最小值為()A. B.4C. D.9.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.10.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.11.在直三棱柱中,底面是等腰直角三角形,,點(diǎn)在棱上,且,則與平面所成角的正弦值為()A. B.C. D.12.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為______.14.在公差不為的等差數(shù)列中,,,成等比數(shù)列,數(shù)列的前項(xiàng)和為(1)求數(shù)列的通項(xiàng)公式;(2)若,且數(shù)列的前項(xiàng)和為,求15.直線的傾斜角的取值范圍是______.16.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為讓“雙減”工作落實(shí)到位,某中學(xué)積極響應(yīng)上級(jí)號(hào)召,全面推進(jìn)中小學(xué)生課后延時(shí)服務(wù),推行課后服務(wù)“”模式,開展了內(nèi)容豐富、形式多樣、有利于學(xué)生身心成長(zhǎng)的活動(dòng).該中學(xué)初一共有700名學(xué)生其中男生400名、女生300名.為讓課后服務(wù)更受歡迎,該校準(zhǔn)備推行體育類與藝術(shù)類兩大類活動(dòng)于2021年9月在初一學(xué)生中進(jìn)行了問卷調(diào)查.(1)調(diào)查結(jié)果顯示:有的男學(xué)生和的女學(xué)生愿意參加體育類活動(dòng),其他男學(xué)生與女學(xué)生都不愿意參加體育類活動(dòng),請(qǐng)完成下邊列聯(lián)表.并判斷是否有的把握認(rèn)為愿意參加體育類活動(dòng)與學(xué)生的性別相關(guān)?愿意參加體育活動(dòng)情況性別愿意參加體育類活動(dòng)不愿意參加體育類活動(dòng)合計(jì)男學(xué)生女學(xué)生合計(jì)(2)在開展了兩個(gè)月活動(dòng)課后,為了了解學(xué)生的活動(dòng)課情況,在初一年級(jí)學(xué)生中按男女比例分層抽取7名學(xué)生調(diào)查情況,并從這7名學(xué)生中隨機(jī)選擇3名學(xué)生進(jìn)行展示,用X表示選出進(jìn)行展示的3名學(xué)生中女學(xué)生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.0.1000.0500.0250.0102.7063.8415.0246.635參考公式:,其中.18.(12分)若存在常數(shù),使得對(duì)任意,,均有,則稱為有界集合,同時(shí)稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.19.(12分)在對(duì)某老舊小區(qū)污水分流改造時(shí),需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級(jí)污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價(jià)為400元/平方米,中間兩道隔墻的建造單價(jià)為248元/平方米,池底的建造單價(jià)為80元/平方米,池蓋的建造單價(jià)為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計(jì)算時(shí)忽略不計(jì))(1)現(xiàn)有財(cái)政撥款9萬(wàn)元,如果將污水處理池的寬建成9米,那么9萬(wàn)元的撥款是否夠用?(2)能否通過合理的設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬(wàn)元?20.(12分)在△ABC中,角A,B,C所對(duì)的邊分別a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,設(shè)D為CB延長(zhǎng)線上一點(diǎn),且AD⊥AC,求線段BD的長(zhǎng)21.(12分)已知中,內(nèi)角的對(duì)邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.22.(10分)如圖在直三棱柱中,為的中點(diǎn),為的中點(diǎn),是中點(diǎn),是與的交點(diǎn),是與的交點(diǎn).(1)求證:;(2)求證:平面;(3)求直線與平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用對(duì)數(shù)的性質(zhì)可得,,再構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷,再構(gòu)造,利用導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性,再由單調(diào)性即可求解.【詳解】由題意可得均大于,因?yàn)?,所以,所以,且,令,,?dāng)時(shí),,所以在單調(diào)遞增,所以,所以,即,令,,當(dāng)時(shí),,所以在上單調(diào)遞減,由,,所以,所以,綜上所述,.故選:A2、D【解析】根據(jù)分布列即可求出【詳解】因?yàn)?,所以故選:D3、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.4、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個(gè)梯形.故選:D.5、D【解析】利用互斥事件概率計(jì)算公式直接求解【詳解】由某超市收銀臺(tái)排隊(duì)等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊(duì)的概率為:故選:D【點(diǎn)睛】本題考查概率的求法、互斥事件概率計(jì)算公式,考查運(yùn)算求解能力,是基礎(chǔ)題6、A【解析】作垂直準(zhǔn)線于點(diǎn),根據(jù)拋物線的定義,得到,當(dāng)三點(diǎn)共線時(shí),的值最小,進(jìn)而可得出結(jié)果.【詳解】如圖,作垂直準(zhǔn)線于點(diǎn),由題意可得,顯然,當(dāng)三點(diǎn)共線時(shí),的值最??;因?yàn)椋?,?zhǔn)線,所以當(dāng)三點(diǎn)共線時(shí),,所以.故選A【點(diǎn)睛】本題主要考查拋物線上任一點(diǎn)到兩定點(diǎn)距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于??碱}型.7、C【解析】根據(jù)圖像或解析式即可判斷對(duì)稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(diǎn)(-x,-y)代入后依然為,故曲線C關(guān)于原點(diǎn)對(duì)稱;②將點(diǎn)(y,x)代入后依然為,故曲線C關(guān)于y=x對(duì)稱;③曲線C在四個(gè)象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點(diǎn)最遠(yuǎn)的點(diǎn)的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯(cuò)誤.故選:C.8、D【解析】求出導(dǎo)數(shù),由導(dǎo)數(shù)確定函數(shù)在上的單調(diào)性與極值,可得最小值【詳解】,所以時(shí),,遞減,時(shí),,遞增,所以是在上的唯一極值點(diǎn),極小值也是最小值.故選:D9、B【解析】計(jì)算出、的值,執(zhí)行程序框圖中的程序,進(jìn)而可得出輸出結(jié)果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.10、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A11、C【解析】取AC的中點(diǎn)M,過點(diǎn)M作,且使得,進(jìn)而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點(diǎn)M,因?yàn)?,則,過點(diǎn)M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.12、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結(jié)果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因?yàn)槿舻缺葦?shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點(diǎn)睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關(guān)性質(zhì),體現(xiàn)了基礎(chǔ)性和綜合性,考查推理能力,是簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓定義求出其長(zhǎng)半軸長(zhǎng),再結(jié)合焦點(diǎn)坐標(biāo)即可計(jì)算作答.【詳解】因橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則該橢圓長(zhǎng)半軸長(zhǎng),而半焦距,于是得短半軸長(zhǎng)b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:14、(1)(2)【解析】(1)由解出,再由前項(xiàng)和為55求得,由等差數(shù)列通項(xiàng)公式即可求解;(2)先求出,再由裂項(xiàng)相消求和即可.【小問1詳解】設(shè)公差為,由,,成等比數(shù)列,可得,即有,整理得,數(shù)列的前項(xiàng)和為55,可得,解得1,1,則;【小問2詳解】,則15、【解析】先求出直線的斜率取值范圍,再根據(jù)斜率與傾斜角的關(guān)系,即可求出【詳解】可化為:,所以,由于,結(jié)合函數(shù)在上的圖象,可知故答案為:【點(diǎn)睛】本題主要考查斜率與傾斜角的關(guān)系的應(yīng)用,以及直線的一般式化斜截式,屬于基礎(chǔ)題16、【解析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡(jiǎn),結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】(1)根據(jù)初一男生數(shù)和女生數(shù),結(jié)合有的男學(xué)生和的女學(xué)生,愿意參加體育類活動(dòng)求解;計(jì)算的值,再與臨界值表對(duì)照下結(jié)論;(2)根據(jù)這7名學(xué)生中男生有4名,女生有3名,隨機(jī)選擇3名由抽到女學(xué)生的人數(shù)X可能為0,1,2,3,分別求得其概率,列出分布列,再求期望.【小問1詳解】解:因?yàn)槌跻还灿?00名學(xué)生其中男生400名、女生300名,且有的男學(xué)生和的女學(xué)生,所以愿意參加體育類活動(dòng)的男生有300名,女生有200名,則列聯(lián)表如下:愿意參加體育活動(dòng)情況性別愿意參加體育類活動(dòng)不愿意參加體育類活動(dòng)合計(jì)男學(xué)生300100400女學(xué)生200100300合計(jì)500200700,所以有的把握認(rèn)為愿意參加體育類活動(dòng)與學(xué)生的性別相關(guān);【小問2詳解】這7名學(xué)生中男生有4名,女生有3名,隨機(jī)選擇3名學(xué)生進(jìn)行展示,抽到女學(xué)生的人數(shù)X可能為0,1,2,3,所以,,所以隨機(jī)變量X分布列如下:X0123p18、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對(duì)任意一個(gè),都有一個(gè),故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因?yàn)?,所以函?shù)單調(diào)遞減,,因?yàn)楹瘮?shù)為有界集合,所以分兩種情況討論:當(dāng),即時(shí),集合的上界,當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為;當(dāng)時(shí),不等式為,即時(shí),集合的上界,當(dāng),即時(shí),集合的上界,同上解不等式得的解為,即時(shí),集合的上界,綜上得時(shí),集合的上界;時(shí),集合的上界.時(shí),集合的上界是一個(gè)減函數(shù),所以此時(shí),時(shí),集合的上界是增函數(shù),所以,所以集合的上界最小值為;19、(1)不夠;(2)將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價(jià)直接計(jì)算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長(zhǎng)為(米),建造總費(fèi)用為:(元)因?yàn)椋匀绻鬯幚沓氐膶捊ǔ?米,那么9萬(wàn)元的撥款是不夠用的.【小問2詳解】設(shè)污水處理池的寬為米,建造總費(fèi)用為元,則污水處理池的長(zhǎng)為米.則因?yàn)?,等?hào)僅當(dāng),即時(shí)成立,所以時(shí)建造總費(fèi)用取最小值90000,所以將污水處理池建成長(zhǎng)為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.20、(1)(2)【解析】(1)利用正弦定理化簡(jiǎn)已知條件,求得,由此求得.(2)利用正弦定理求得,由列方程來(lái)求得.【小問1詳解】,由正弦定理得,因?yàn)椋裕?【小問2詳解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,21、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據(jù)題意,由余弦定理得,再根據(jù)基本不等式求得,當(dāng)且僅當(dāng)時(shí)取得等號(hào),即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因?yàn)椋浴拘?詳解】解:由余弦定理,即,由基本不等式得:,即,當(dāng)且僅當(dāng)時(shí)取得等號(hào),,所以面積的最大值為22、(1)證明見解析(2)證明見解析(3)【解析】(1)法一:通過建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過線面垂直證明,法三:根據(jù)三垂線證明;(2)法一:通過建立空間直角坐標(biāo)系,運(yùn)用向量數(shù)量積證明,法二:通過面面平行證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論