版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣州市嶺南中學(xué)2025屆數(shù)學(xué)高二上期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的前項(xiàng)和為,若,,則()A.20 B.30C.40 D.502.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或3.某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.4.二次方程的兩根為2,,那么關(guān)于的不等式的解集為()A.或 B.或C. D.5.已知數(shù)列是等比數(shù)列,,數(shù)列是等差數(shù)列,,則的值是()A. B.C. D.6.2021年小林大學(xué)畢業(yè)后,9月1日開始工作,他決定給自己開一張儲(chǔ)蓄銀行卡,每月的10號(hào)存錢至該銀行卡(假設(shè)當(dāng)天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個(gè)月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達(dá)到1萬元的時(shí)間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日7.已知斜率為1的直線與橢圓相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),AB的中點(diǎn)為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.8.若1,m,9三個(gè)數(shù)成等比數(shù)列,則圓錐曲線的離心率是()A.或 B.或2C.或 D.或29.已知平面向量,且,向量滿足,則的最小值為()A. B.C. D.10.設(shè),,則“”是“”的A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件11.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.8012.已知圓,圓,M,N分別是圓上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則以的最小值為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的導(dǎo)函數(shù)為,,,則的解集為___________.14.從編號(hào)為01,02,…,60的60個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中的前兩個(gè)編號(hào)分別為02,08(編號(hào)按從小到大的順序排列),則樣本中最大的編號(hào)是_________15.若在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列,現(xiàn)將數(shù)列進(jìn)行構(gòu)造,第次得到數(shù)列;第次得到數(shù)列;依次構(gòu)造,第次得到數(shù)列;記,則(1)___________,(2)___________16.已知直線,圓,若直線與圓相交于兩點(diǎn),則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由18.(12分)已知函數(shù)(1)判斷的零點(diǎn)個(gè)數(shù);(2)若對(duì)任意恒成立,求的取值范圍19.(12分)(1)已知等軸雙曲線的上頂點(diǎn)到一條漸近線的距離為,求此雙曲線的方程;(2)已知拋物線的焦點(diǎn)為,設(shè)過焦點(diǎn)且傾斜角為的直線交拋物線于,兩點(diǎn),求線段的長20.(12分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離之比為.動(dòng)點(diǎn)的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點(diǎn)分別為,點(diǎn)是曲線上異于的一點(diǎn),直線的斜率為,直線的斜率為,求證:為定值.21.(12分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.22.(10分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和,并求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等比數(shù)列前項(xiàng)和的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑缺葦?shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B2、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D3、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B4、B【解析】根據(jù),確定二次函數(shù)的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因?yàn)槎畏匠痰膬筛鶠?,,又二次函數(shù)的圖象開口向上,所以不等式的解集為或,故選:B5、B【解析】根據(jù)等差數(shù)列和等比數(shù)列下標(biāo)和的性質(zhì)即可求解.【詳解】為等比數(shù)列,,,,;為等差數(shù)列,,,,,∴.故選:B.6、C【解析】分析可得每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為,分析首次達(dá)到1萬元的值,即得解【詳解】依題意可知,小林從第一個(gè)月開始,每月所存錢數(shù)依次成首項(xiàng)為1,公比為2的等比數(shù)列,其前n項(xiàng)和為.因?yàn)闉樵龊瘮?shù),且,所以第14個(gè)月的10號(hào)存完錢后,他這張銀行卡賬上存錢總額首次達(dá)到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達(dá)到1萬元.故選:C7、B【解析】這是中點(diǎn)弦問題,注意斜率與橢圓a,b之間的關(guān)系.【詳解】如圖:依題意,假設(shè)斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點(diǎn)坐標(biāo)為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.8、D【解析】運(yùn)用等比數(shù)列的性質(zhì)可得,再討論,,求出曲線的,,由離心率公式計(jì)算即可得到【詳解】三個(gè)數(shù)1,,9成等比數(shù)列,則,解得,,當(dāng)時(shí),曲線為橢圓,則;當(dāng)時(shí),曲線為為雙曲線,則離心率故選:9、B【解析】由題設(shè)可得,又,易知,,將問題轉(zhuǎn)化為平面點(diǎn)線距離關(guān)系:向量的終點(diǎn)為圓心,1為半徑的圓上的點(diǎn)到向量所在射線的距離最短,即可求的最小值.【詳解】解:∵,而,∴,又,即,又,,∴,若,則,∴在以為圓心,1為半徑的圓上,若,則,∴問題轉(zhuǎn)化為求在圓上的哪一點(diǎn)時(shí),使最小,又,∴當(dāng)且僅當(dāng)三點(diǎn)共線且時(shí),最小為.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由已知確定,,構(gòu)成等邊三角形,即可將問題轉(zhuǎn)化為圓上動(dòng)點(diǎn)到射線的距離最短問題.10、C【解析】不能推出,反過來,若則成立,故為必要不充分條件.11、C【解析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時(shí)必過N點(diǎn),則則(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)故選:C12、A【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點(diǎn)共線時(shí),取得最小值,的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,即:.故選:A.注意:9至12題為多選題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù),構(gòu)造函數(shù),利用其單調(diào)性求解.【詳解】因?yàn)?,所以,令,則,,所以是減函數(shù),又,即,,所以,所以,則的解集為故答案為:14、56【解析】根據(jù)系統(tǒng)抽樣的定義得到編號(hào)之間的關(guān)系,即可得到結(jié)論.【詳解】由已知樣本中的前兩個(gè)編號(hào)分別為02,08,則樣本數(shù)據(jù)間距為,則樣本容量為,則對(duì)應(yīng)的號(hào)碼數(shù),則當(dāng)時(shí),x取得最大值為56故答案為:5615、①.②.【解析】根據(jù)題意得到,再利用疊加法求解即可.【詳解】由題知:,,,所以,,,……,,所以,,……,,即,所以.故答案為:;16、【解析】求出直線過的定點(diǎn),當(dāng)圓心和定點(diǎn)的連線垂直于直線時(shí),取得最小值,結(jié)合即可求解.【詳解】由題意知,圓,圓心,半徑,直線,,,解得,故直線過定點(diǎn),設(shè)圓心到直線的距離為,則,可知當(dāng)距離最大時(shí),有最小值,由圖可知,時(shí),最大,此時(shí),此時(shí).故的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2)存在,.【解析】(1)對(duì)函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時(shí),由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當(dāng)時(shí),,則要恒成立,令,再令,所以在內(nèi)遞減,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,;②當(dāng)時(shí),lnx>0,則要恒成立,由①可知,當(dāng)時(shí),,所以內(nèi)遞增,所以當(dāng)時(shí),,故,所以在內(nèi)遞增,綜合①②可得,即存在常數(shù)滿足題意18、(1)個(gè);(2).【解析】(1)求,利用導(dǎo)數(shù)判斷的單調(diào)性,結(jié)合單調(diào)性以及零點(diǎn)存在性定理即可求解;(2)由題意可得對(duì)任意恒成立,令,則,利用導(dǎo)數(shù)求的最小值即可求解.【小問1詳解】的定義域?yàn)?,由可得,?dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),,,此時(shí)在上無零點(diǎn),當(dāng)時(shí),,,,且在上單調(diào)遞增,由零點(diǎn)存在定理可得在區(qū)間上存在個(gè)零點(diǎn),綜上所述有個(gè)零點(diǎn).【小問2詳解】由題意可得:對(duì)任意恒成立,即對(duì)任意恒成立,令,則,由可得:,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以,所以的取值范圍.19、(1);(2)8.【解析】(1)由等軸雙曲線的一條漸近線方程為,再由點(diǎn)到直線距離公式求解即可;(2)求得直線方程代入拋物線,結(jié)合焦點(diǎn)弦長求解即可.【詳解】(1)由等軸雙曲線的一條漸近線方程為,且頂點(diǎn)到漸近線的距離為,可得,解得,故雙曲線方程(2)拋物線的焦點(diǎn)為直線的方程為,即與拋物線方程聯(lián)立,得,消,整理得,設(shè)其兩根為,,且由拋物線的定義可知,所以,線段的長是【點(diǎn)睛】(1)直線與拋物線的位置關(guān)系和直線與橢圓、雙曲線的位置關(guān)系類似,一般要用到根與系數(shù)的關(guān)系;(2)有關(guān)直線與拋物線弦長問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p,若不過焦點(diǎn),則必須用一般弦長公式20、(1),曲線是以為焦點(diǎn)的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利用斜率公式及橢圓方程計(jì)算即得.【小問1詳解】設(shè)點(diǎn)坐標(biāo)為,根據(jù)題意,得,左右同時(shí)平方,得,整理得,,即,所以曲線的方程是,曲線是以為焦點(diǎn)的橢圓.【小問2詳解】由題意得,設(shè)的坐標(biāo)是,因?yàn)辄c(diǎn)在曲線上,所以,因?yàn)?,所以,所以為定?21、(1)證明見解析.(2)【解析】(1)利用線面垂直的性質(zhì)證明出;(2)利用等體積轉(zhuǎn)換法,先求出O到平面AEF的距離,再求C到平面的距離.【小問1詳解】在矩形中,.因?yàn)槠矫嫫矫妫矫嫫矫?所以平面,所以.【小問2詳解】設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院工作經(jīng)驗(yàn)與發(fā)展建議計(jì)劃
- 機(jī)械制造行業(yè)安全規(guī)范
- 文化行業(yè)助理職責(zé)概述
- 文化藝術(shù)行業(yè)營銷工作總結(jié)
- 機(jī)場(chǎng)前臺(tái)服務(wù)總結(jié)
- 2024年稅務(wù)師題庫【滿分必刷】
- 2024年認(rèn)位置的教案
- 2024年窮人教案6篇
- 農(nóng)村建筑構(gòu)建合同(2篇)
- 出租車包班合同(2篇)
- 金科新未來大聯(lián)考2025屆高三12月質(zhì)量檢測(cè)語文試題(含答案解析)
- 江蘇省2025年高中學(xué)業(yè)水平合格考?xì)v史試卷試題(含答案詳解)
- 《地下水環(huán)境背景值統(tǒng)計(jì)表征技術(shù)指南(試行)》
- 大學(xué)試卷(示范)
- 高職院校智能制造實(shí)驗(yàn)室實(shí)訓(xùn)中心建設(shè)方案
- 房產(chǎn)交易管理平臺(tái)行業(yè)發(fā)展預(yù)測(cè)分析
- 檔案工作人員分工及崗位責(zé)任制(4篇)
- 電商整年銷售規(guī)劃
- GB 4396-2024二氧化碳滅火劑
- 美麗的秋天景色作文500字小學(xué)
- 施工單位2025年度安全生產(chǎn)工作總結(jié)及計(jì)劃
評(píng)論
0/150
提交評(píng)論