版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆上海市上海交大附中數(shù)學(xué)高二上期末檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《周髀算經(jīng)》中有這樣一個(gè)問(wèn)題:從冬至起,接下來(lái)依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個(gè)節(jié)氣的日影長(zhǎng)之和為25.5尺,且前九個(gè)節(jié)氣日影長(zhǎng)之和為85.5尺,則立春的日影長(zhǎng)為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺2.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.3.閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出的S的值等于()A.2 B.6C.14 D.304.橢圓=1的一個(gè)焦點(diǎn)為F,過(guò)原點(diǎn)O作直線(不經(jīng)過(guò)焦點(diǎn)F)與橢圓交于A,B兩點(diǎn),若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.5.是數(shù)列,,,-17,中的第幾項(xiàng)()A第項(xiàng) B.第項(xiàng)C.第項(xiàng) D.第項(xiàng)6.在中國(guó),周朝時(shí)期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個(gè)直角三角形的斜邊長(zhǎng)等于則這個(gè)直角三角形周長(zhǎng)的最大值為()A. B.C. D.7.下邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,如果輸入a=102,b=238,則輸出的a的值為()A.17 B.34C.36 D.688.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說(shuō)法正確的是()A.是函數(shù)的極大值點(diǎn)B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點(diǎn)D.曲線在處切線的斜率小于零9.設(shè)各項(xiàng)均為正項(xiàng)的數(shù)列滿足,,若,且數(shù)列的前項(xiàng)和為,則()A. B.C.5 D.610.等比數(shù)列滿足,,則()A.11 B.C.9 D.11.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線12.在等比數(shù)列中,,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在處的切線平行于x軸,則___________.14.已知的頂點(diǎn)A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點(diǎn)C的坐標(biāo);(2)直線BC的方程;15.已知等差數(shù)列中,,則=_________.16.將參加冬季越野跑的名選手編號(hào)為:,采用系統(tǒng)抽樣方法抽取一個(gè)容量為的樣本,把編號(hào)分為組后,第一組的到這個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為_(kāi)_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn)(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值18.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點(diǎn)的坐標(biāo)19.(12分)在平面直角坐標(biāo)系中,點(diǎn)在拋物線上(1)求的值;(2)若直線l與拋物線C交于,兩點(diǎn),,且,求的最小值20.(12分)某校高二年級(jí)全體學(xué)生參加了一次數(shù)學(xué)測(cè)試,學(xué)校利用簡(jiǎn)單隨機(jī)抽樣的方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測(cè)試成績(jī)(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,求此兩人都來(lái)自甲班的概率.21.(12分)已知函數(shù)(1)證明;(2)設(shè),證明:若一定有零點(diǎn),并判斷零點(diǎn)的個(gè)數(shù)22.(10分)在中內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且(1)求角A(2)若,,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式求出首項(xiàng)和公差,即可得出答案.【詳解】解:設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,則,前9項(xiàng)之和,即,解得,所以立春的日影長(zhǎng)為.故選:B.2、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B3、C【解析】模擬運(yùn)行程序,直到得出輸出的S的值.【詳解】運(yùn)行程序框圖,,,;,,;,,;,輸出.故選:C4、A【解析】分情況討論當(dāng)直線AB的斜率不存在時(shí),可求面積,檢驗(yàn)是否滿足條件,當(dāng)直線AB的斜率存在時(shí),可設(shè)直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點(diǎn)分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當(dāng)直線AB的斜率不存在時(shí),直線AB的方程為x=0,此時(shí)AB=4,=AB?5=×5=10,不符合題意;②可設(shè)直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A5、C【解析】利用等差數(shù)列的通項(xiàng)公式即可求解【詳解】設(shè)數(shù)列,,,,是首項(xiàng)為,公差d=-4的等差數(shù)列{},,令,得故選:C6、C【解析】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長(zhǎng)的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.故這個(gè)直角三角形周長(zhǎng)的最大值為故選:C7、B【解析】根據(jù)程序框圖所示代入運(yùn)行即可.【詳解】初始輸入:;第一次運(yùn)算:;第二次運(yùn)算:;第三次運(yùn)算:;第四次運(yùn)算:;結(jié)束,輸出34.故選:B.8、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點(diǎn),即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)或時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點(diǎn)與最小值點(diǎn),因?yàn)?,所以曲線在處切線的斜率大于零,故選:B9、D【解析】由利用因式分解可得,即可判斷出數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,從而得到數(shù)列,數(shù)列的通項(xiàng)公式,進(jìn)而求出【詳解】等價(jià)于,而,所以,即可知數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,即有,所以,故故選:D10、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B11、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點(diǎn)睛:在直角坐標(biāo)系中,如果某曲線C(看作點(diǎn)的集合或適合某種條件的點(diǎn)的軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)那么,這個(gè)方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時(shí)要注意變量范圍.12、C【解析】根據(jù),然后與,可得,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),重在計(jì)算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時(shí)的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點(diǎn)處的切線平行于x軸,∴,即.故答案為:14、(1);(2).【解析】(1)設(shè)出點(diǎn)C的坐標(biāo),進(jìn)而根據(jù)點(diǎn)C在中線上及求得答案;(2)設(shè)出點(diǎn)B的坐標(biāo),進(jìn)而求出點(diǎn)M的坐標(biāo),然后根據(jù)中線的方程及求出點(diǎn)B的坐標(biāo),進(jìn)而求出直線BC的方程.【小問(wèn)1詳解】設(shè)C點(diǎn)的坐標(biāo)為,則由題知,即.【小問(wèn)2詳解】設(shè)B點(diǎn)的坐標(biāo)為,則中點(diǎn)M坐標(biāo)代入中線CM方程則由題知,即,又,則,所以直線BC方程為.15、4【解析】由等差數(shù)列的通項(xiàng)公式求出公差,進(jìn)而求出.【詳解】設(shè)該等差數(shù)列的公差為,則,所以.故答案為:4.16、【解析】,所以抽到穿白色衣服的選手號(hào)碼為,共三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析,直線與平面的距離為(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問(wèn)1詳解】解:因?yàn)槠矫?,四邊形為矩形,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因?yàn)?,因此,平?所以,平面的一個(gè)法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問(wèn)2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.18、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)的面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線的距離為且解得解得或,點(diǎn)的坐標(biāo)為或19、(1)1(2)【解析】(1)將點(diǎn)代入即可求解;(2)利用向量數(shù)量積為3求出,再對(duì)式子變形后使用基本不等式進(jìn)行求解最小值.【小問(wèn)1詳解】將代入拋物線,解得:.【小問(wèn)2詳解】,在拋物線C上,故,,解得:或2,因?yàn)?,所以,即,故,?dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.20、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,用列舉法寫(xiě)出基本事件總數(shù),再利用古典概型的概率計(jì)算公式即可求解.【小問(wèn)1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問(wèn)2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,兩人都來(lái)自甲班”為事件M,事件M包括:共1個(gè)基本事件,由古典概型的計(jì)算概率的公式知∴所以兩人都來(lái)自甲班的概率為21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析,1個(gè)零點(diǎn).【解析】(1)求導(dǎo)同分化簡(jiǎn),構(gòu)造新函數(shù)判斷導(dǎo)數(shù)正負(fù)即可;(2)令g(x)=0,化簡(jiǎn)方程,將問(wèn)題轉(zhuǎn)化為討論方程解的個(gè)數(shù)問(wèn)題.【小問(wèn)1詳解】,設(shè),則,時(shí),遞減,時(shí),遞增,而,所以時(shí),,所以;小問(wèn)2詳解】有零點(diǎn),則有解,即有解,又,則只要,因?yàn)?,方程可以化為,現(xiàn)在證明有解,令,則,可知在遞減,在遞增,所以,因?yàn)?,所以,在?nèi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 托班跳皮筋課程設(shè)計(jì)
- 2024年私人貸款擔(dān)保協(xié)議模板
- 北京市花卉租賃合同
- 辦公空間改造施工協(xié)議
- 知識(shí)產(chǎn)權(quán)科技合同樣本
- 2024年江蘇南通房產(chǎn)銷(xiāo)售協(xié)議
- 國(guó)際會(huì)議中心精裝房施工合同
- 互聯(lián)網(wǎng)安全合同管理準(zhǔn)則
- 2024年天使投資協(xié)議:大數(shù)據(jù)與區(qū)塊鏈技術(shù)應(yīng)用3篇
- 駕駛員技能提升協(xié)議
- 家居風(fēng)格分類(lèi)說(shuō)明PPT講座
- 高標(biāo)準(zhǔn)農(nóng)田施工合同
- GB/T 35833-2018廚房油污清潔劑
- GB/T 27800-2011靜密封橡膠制品使用壽命的快速預(yù)測(cè)方法
- 醫(yī)學(xué)人工智能原理及實(shí)踐
- 中學(xué)生法制教育主題班會(huì)課件《預(yù)防未成年人犯罪》
- 雙氧水工藝培訓(xùn)課件
- GB∕T 41550-2022 畜禽屠宰用脫毛劑使用規(guī)范
- 國(guó)家開(kāi)放大學(xué)《公共政策概論》形考任務(wù)1參考答案
- 部編版六年級(jí)語(yǔ)文上冊(cè)第23課《月光曲》導(dǎo)學(xué)案
- 中醫(yī)基礎(chǔ)理論題庫(kù)4
評(píng)論
0/150
提交評(píng)論