2023-2024學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷_第1頁
2023-2024學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷_第2頁
2023-2024學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷_第3頁
2023-2024學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷_第4頁
2023-2024學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年山東省肥城市泰西中學高三入學調(diào)研數(shù)學試題(2)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.2.函數(shù)在上的圖象大致為()A. B.C. D.3.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.4.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.5.函數(shù)的圖像大致為().A. B.C. D.6.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.37.設(shè)點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.8.設(shè)正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.369.若數(shù)列滿足且,則使的的值為()A. B. C. D.10.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.11.已知非零向量,滿足,,則與的夾角為()A. B. C. D.12.若的展開式中含有常數(shù)項,且的最小值為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數(shù)的取值范圍為________.14.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.15.已知實數(shù),滿足約束條件,則的最大值是__________.16.六位同學坐在一排,現(xiàn)讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數(shù)字回答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.18.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè),為的前n項和,求證:.19.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.21.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.22.(10分)已知函數(shù).(1)求證:當時,;(2)若對任意存在和使成立,求實數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎(chǔ)題.2.A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.3.D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.4.C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當時,,在上單調(diào)遞減,當時,,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當時,,在遞減;當時,,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點睛】本題主要考查了根據(jù)導數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進而求導構(gòu)造函數(shù)求解的最大值.屬于難題.5.A【解析】

本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數(shù)解析式較復雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負等有關(guān)性質(zhì)進行逐一排除是解題的關(guān)鍵;屬于中檔題.6.C【解析】

對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.7.C【解析】

設(shè),求,作為的函數(shù),其最小值是6,利用導數(shù)知識求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數(shù)的應(yīng)用,考查用導數(shù)求最值.解題時對和的關(guān)系的處理是解題關(guān)鍵.8.B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.9.C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.10.A【解析】

對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.11.B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎(chǔ)題.12.C【解析】展開式的通項為,因為展開式中含有常數(shù)項,所以,即為整數(shù),故n的最小值為1.所以.故選C點睛:求二項展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當與圓E相切時,此時,由此列出不等式,即可求解。【詳解】由題意可得,直線的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外.圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設(shè)過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數(shù)的取值范圍為【點睛】本題主要考查了直線與拋物線位置關(guān)系的應(yīng)用,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中準確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉(zhuǎn)化為圓上存在點,使得是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。14.②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.15.【解析】

令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經(jīng)過時,最大,且,故的最大值為.故答案為:.【點睛】本題考查線性規(guī)劃中非線性目標函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.16.135【解析】

根據(jù)題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據(jù)題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】

(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進而可得結(jié)論;(2)建立空間直角坐標系,利用向量求得平面的法向量,進而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點,連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標系,設(shè),則,,,,,,為面的一個法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點睛】本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認真審題,注意中位線和向量法的合理運用,屬于基礎(chǔ)題.18.(1)(2)證明見解析【解析】

(1)利用與的關(guān)系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關(guān)系、裂項求和法,屬于基礎(chǔ)題.19.(1);(2).【解析】

(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當,即時,.【方法點睛】解三角形問題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進行判斷,常用余弦定理、面積公式等.20.(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.21.(1)曲線的直角坐標方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】

(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.22.(1)見解析;(2)【解析】

(1)不等式等價于,設(shè),利用導數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個不同零點,且,利用導數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當時,由,所以在上是減函數(shù),所以,故.因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論