版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省德州市齊河縣一中2025屆數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在三棱錐中,平面,,,,Q是邊上的一動(dòng)點(diǎn),且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.2.“趙爽弦圖”是我國(guó)古代數(shù)學(xué)的瑰寶,如圖所示,它是由四個(gè)全等的直角三角形和一個(gè)正方形構(gòu)成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個(gè)區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個(gè)區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種3.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個(gè)舉辦過夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.根據(jù)安排,國(guó)家體育場(chǎng)(鳥巢)成為北京冬奧會(huì)開、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個(gè)“相似橢圓”(離心率相同的兩個(gè)橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長(zhǎng)軸一端點(diǎn)A和短軸一端點(diǎn)B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.4.有7名同學(xué)參加百米競(jìng)賽,預(yù)賽成績(jī)各不相同,取前3名參加決賽,小明同學(xué)已經(jīng)知道了自己的成績(jī),為了判斷自己是否能進(jìn)入決賽,他還需要知道7名同學(xué)成績(jī)的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差5.曲線在處的切線的斜率為()A.-1 B.1C.2 D.36.點(diǎn)到直線的距離是()A. B.C. D.7.已知直線經(jīng)過點(diǎn),且是的方向向量,則點(diǎn)到的距離為()A. B.C. D.8.命題:,的否定為()A., B.不存在,C., D.,9.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點(diǎn)平分的弦所在的直線方程為⑤已知過點(diǎn)的直線與圓的交點(diǎn)個(gè)數(shù)有2個(gè).A.①③④ B.②③④C.①③⑤ D.①②⑤10.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個(gè)焦點(diǎn).直線l:與橢圓C:相切于點(diǎn)P,橢圓C的焦點(diǎn)為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.11.已知空間向量,,且,則的值為()A. B.C. D.12.函數(shù)直線與的圖象相交于A、B兩點(diǎn),則的最小值為()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左、右焦點(diǎn),若為雙曲線上一點(diǎn),且,則__________.14.已知,,且與的夾角為鈍角,則x的取值范圍是___.15.根據(jù)拋物線的光學(xué)性質(zhì)可知,從拋物線的焦點(diǎn)發(fā)出的光線經(jīng)該拋物線反射后與對(duì)稱軸平行,一條平行于對(duì)稱軸的光線經(jīng)該拋物線反射后會(huì)經(jīng)過拋物線的焦點(diǎn).如圖所示,從沿直線發(fā)出的光線經(jīng)拋物線兩次反射后,回到光源接收器,則該光線經(jīng)過的路程為___________.16.已知命題:,總有.則為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記數(shù)列的前n項(xiàng)和為,已知點(diǎn)在函數(shù)的圖像上(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前9項(xiàng)和18.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值19.(12分)已知?jiǎng)又本€l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時(shí),直線l被圓C所截得的弦長(zhǎng)最???請(qǐng)求出該最小值20.(12分)已知為等差數(shù)列,是各項(xiàng)均為正數(shù)的等比數(shù)列的前n項(xiàng)和,,,,在①;②;③.這三個(gè)條件中任選其中一個(gè),補(bǔ)充在上面的橫線上,并完成下面問題的解答(如果選擇多個(gè)條件解答,則按選擇的第一個(gè)解答計(jì)分)(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.(12分)已知命題p:“,”為假命題,命題q:“實(shí)數(shù)滿足”.若是真命題,是假命題,求的取值范圍22.(10分)已知拋物線C:經(jīng)過點(diǎn).(1)求拋物線C的方程及其準(zhǔn)線方程;(2)經(jīng)過拋物線C的焦點(diǎn)F的直線l與拋物線交于兩點(diǎn)M,N,且與拋物線的準(zhǔn)線交于點(diǎn)Q.若,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由平面,直線與平面所成角的最大時(shí),最小,也即最小,,由此可求得,從而得,得長(zhǎng),然后取外心,作,取H為的中點(diǎn),使得,則易得,求出的長(zhǎng)即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點(diǎn),使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點(diǎn)睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上2、B【解析】根據(jù)題意,分2步進(jìn)行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分2步進(jìn)行分析:當(dāng)區(qū)域①、②、⑤這三個(gè)區(qū)域兩兩相鄰,有種涂色的方法;當(dāng)區(qū)域③、④,必須有1個(gè)區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B3、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因?yàn)閮?nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因?yàn)閮汕芯€斜率之積等于,可得,可得,所以離心率為.故選:C.4、C【解析】根據(jù)中位數(shù)的性質(zhì),結(jié)合題設(shè)按成績(jī)排序7選3,即可知還需明確的成績(jī)數(shù)據(jù)信息.【詳解】由題設(shè),7名同學(xué)參加百米競(jìng)賽,要取前3名參加決賽,則成績(jī)從高到低排列,確定7名同學(xué)成績(jī)的中位數(shù),即第3名的成績(jī)便可判斷自己是否能進(jìn)入決賽.故選:C.5、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因?yàn)?,所以,所以切線的斜率為.故選:D.6、B【解析】直接使用點(diǎn)到直線距離公式代入即可.【詳解】由點(diǎn)到直線距離公式得故選:B7、B【解析】求出,根據(jù)點(diǎn)到直線的距離的向量公式進(jìn)行求解.【詳解】因?yàn)?,為的一個(gè)方向向量,所以點(diǎn)到直線的距離.故選:B8、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結(jié)論即可【詳解】解:命題:,的否定為:,故選:D9、C【解析】求出兩直線垂直時(shí)m值判斷①;由復(fù)合命題真值表可判斷②;化簡(jiǎn)不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗(yàn)證判斷④;判定點(diǎn)與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個(gè)是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點(diǎn),④不正確;點(diǎn)在圓上,則直線與圓至少有一個(gè)公共點(diǎn),而過點(diǎn)與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個(gè)交點(diǎn),⑤正確,所以所有真命題的序號(hào)是①③⑤.故選:C10、A【解析】先求得點(diǎn)坐標(biāo),然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A11、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.12、C【解析】先求出AB坐標(biāo),表示出,規(guī)定函數(shù),其中,利用導(dǎo)數(shù)求最小值.【詳解】聯(lián)立解得可得點(diǎn).聯(lián)立解得可得點(diǎn).由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點(diǎn)睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.二、填空題:本題共4小題,每小題5分,共20分。13、17【解析】根據(jù)雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1714、∪【解析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.15、12【解析】求出,利用拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離可得答案.【詳解】由得,設(shè),,由拋物線性質(zhì),與軸的交點(diǎn)即為拋物線的焦點(diǎn),,,,所以,所以該光線經(jīng)過的路程為12.故答案為:12.16、,使得【解析】全稱命題改否定,首先把全稱量詞改成特稱量詞,然后把后面結(jié)論改否定即可.【詳解】解:因?yàn)槊},總有,所以的否定為:,使得故答案為,使得【點(diǎn)睛】本題考查了全稱命題的否定,全稱命題(特稱命題)改否定,首先把全稱量詞(特稱量詞)改成特稱量詞(全稱量詞),然后把后面結(jié)論改否定即可.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用的關(guān)系可求.(2)利用裂項(xiàng)相消法可求數(shù)列的前9項(xiàng)和【小問1詳解】由題意知當(dāng)時(shí),;當(dāng)時(shí),,適合上式所以【小問2詳解】則18、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值19、(1)詳見解析(2)m為-時(shí),截得的弦長(zhǎng)最小,最小值為2【解析】(1)將直線l變形,可知直線l過定點(diǎn),證明定點(diǎn)在圓內(nèi)部;(2)利用垂徑定理和弦長(zhǎng)公式可得.【詳解】(1)證明:直線l變形為m(x-y+1)+(3x-2y)=0令解得,如圖所示,故動(dòng)直線l恒過定點(diǎn)A(2,3)而|AC|==<3(半徑)∴點(diǎn)A在圓內(nèi),故無論m取何值,直線l與圓C總相交(2)解:由平面幾何知識(shí)知,弦心距越大,弦長(zhǎng)越小,即當(dāng)AC垂直直線l時(shí),弦長(zhǎng)最小,此時(shí)kl·kAC=-1,即,∴m=-最小值為故m為-時(shí),直線l被圓C所截得的弦長(zhǎng)最小,最小值為2【點(diǎn)睛】考查直線過定點(diǎn)、點(diǎn)與圓的位置關(guān)系以及弦長(zhǎng)問題,解題的關(guān)鍵是直線系形式的轉(zhuǎn)化.20、(1)無論選擇哪個(gè)條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問1詳解】設(shè)的公差為,因?yàn)?,;所以,解得,所?選①:設(shè)的公比為,則;由題意得,因?yàn)?,所以,解得或(舍);所?選②:由,當(dāng)時(shí),,因?yàn)?,所以;?dāng)時(shí),,整理得;即是首項(xiàng)和公比均為2的等比數(shù)列,所以.選③:因?yàn)?,,所以,解得;所?【小問2詳解】由(1)得;所以.21、或【解析】先假設(shè)命題、為真,分別求得實(shí)數(shù)的取值范圍,再由命題、具體的真假,取實(shí)數(shù)的取值范圍或其補(bǔ)集,最終確定實(shí)數(shù)的取值范圍.【詳解】若命題p為真,則“,”為假命題則,恒成立∴恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽高考狀元的數(shù)學(xué)試卷
- 燒結(jié)帶冷機(jī)大修施工方案
- 沭陽(yáng)工程竹膠板施工方案
- 甘肅仿木欄桿安裝施工方案
- 初中魯教版六上數(shù)學(xué)試卷
- 北大師范版數(shù)學(xué)試卷
- 跨境物流優(yōu)化合作協(xié)議
- 企業(yè)信息化平臺(tái)建設(shè)項(xiàng)目合同
- 人工智能技術(shù)授權(quán)協(xié)議
- 安徽專升本高數(shù)數(shù)學(xué)試卷
- 大數(shù)據(jù)平臺(tái)及風(fēng)險(xiǎn)預(yù)警系統(tǒng)采購(gòu)項(xiàng)目需求說明書天津?yàn)I海農(nóng)村商業(yè)銀行【模板】
- 清華抬頭信紙
- 八年級(jí)心理健康教育《自控力——成功的標(biāo)尺》課件
- 中國(guó)動(dòng)畫之經(jīng)典賞析PPT課件
- 施工現(xiàn)場(chǎng)節(jié)電方法
- T∕CAMDI 041-2020 增材制造(3D打?。┒ㄖ剖焦强剖中g(shù)導(dǎo)板
- 水利工程安全生產(chǎn)組織機(jī)構(gòu)
- 廣東省佛山市南海區(qū)人民法院
- 實(shí)施農(nóng)村客運(yùn)公交化改造推進(jìn)城鄉(xiāng)客運(yùn)一體化發(fā)展
- 口腔修復(fù)學(xué)專業(yè)英語詞匯整理
- 【圖文】化學(xué)纖維質(zhì)量檢驗(yàn)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論