版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
馬鞍山市第二中學2025屆高一數(shù)學第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若函數(shù)有3個零點,則實數(shù)m的取值范圍()A. B.C.(0,1) D.2.已知,,,,則,,的大小關系是()A. B.C. D.3.若在上單調(diào)遞減,則的取值范圍是().A. B.C. D.4.函數(shù)的部分圖象大致是圖中的()A.. B.C. D.5.我國著名數(shù)學家華羅庚曾說:數(shù)缺形時少直觀,形少數(shù)時難人微,數(shù)形結合百般好,割裂分家萬事休.在數(shù)學的學習和研究中,有時可憑借函數(shù)的解析式琢磨函數(shù)圖像的特征.如函數(shù),的圖像大致為()A. B.C. D.6.要得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度7.如果關于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-88.函數(shù)的定義域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)9.已知“”是“”的充分不必要條件,則k的取值范圍為()A. B.C. D.10.集合,,則P∩M等于A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知定義在上的奇函數(shù),當時,,當時,________12.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________13.命題,,則為______.14.如圖,在四棱錐中,平面平面,是邊長為4的等邊三角形,四邊形是等腰梯形,,則四棱錐外接球的表面積是____________.15.正實數(shù)a,b,c滿足a+2-a=2,b+3b=3,c+=4,則實數(shù)a,b,c之間的大小關系為_________.16.=________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若=,是第四象限角,求的值.18.已知.(1)求的值;(2)若且,求sin2α-cosα的值19.已知函數(shù)為偶函數(shù),當時,,(a為常數(shù)).(1)當x<0時,求的解析式:(2)設函數(shù)在[0,5]上的最大值為,求的表達式;(3)對于(2)中的,試求滿足的所有實數(shù)成的取值集合.20.已知函數(shù),當時,取得最小值(1)求a的值;(2)若函數(shù)有4個零點,求t的取值范圍21.已知線段AB的端點A的坐標為,端點B是圓:上的動點.(1)求過A點且與圓相交時的弦長為的直線的方程(2)求線段AB中點M的軌跡方程,并說明它是什么圖形
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】函數(shù)有3個零點,所以有三個實根,即直線與函數(shù)的圖象有三個交點,作出圖象,即可求出實數(shù)的取值范圍【詳解】因為函數(shù)有3個零點,所以有三個實根,即直線與函數(shù)的圖象有三個交點作出函數(shù)圖象,由圖可知,實數(shù)的取值范圍是故選:C.2、B【解析】根據(jù)題意不妨設,利用對數(shù)的運算性質化簡x,利用指數(shù)函數(shù)的單調(diào)性求出y的取值范圍,利用指數(shù)冪的運算求出z,進而得出結果.【詳解】由,不妨設,則,,,所以,故選:B3、B【解析】令f(x)=,由題意得f(x)在上單調(diào)遞增,且f(﹣1),由此能求出a的取值范圍【詳解】∵函數(shù)在上單調(diào)遞減,令f(x)=,∴f(x)=在上單調(diào)遞增,且f(﹣1)∴,解得a≤8故選B.【點睛】本題考查實數(shù)值的求法,注意函數(shù)的單調(diào)性的合理運用,屬于基礎題.4、D【解析】根據(jù)函數(shù)的奇偶性及函數(shù)值得符號即可得到結果.【詳解】解:函數(shù)的定義域為R,即∴函數(shù)為奇函數(shù),排除A,B,當時,,排除C,故選:D【點睛】函數(shù)識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關函數(shù)模型,利用這一函數(shù)模型來分析解決問題5、B【解析】根據(jù)題意求出函數(shù)的定義域并判斷出函數(shù)的奇偶性,再代入特殊值點即可判斷答案.【詳解】由題意,函數(shù)定義域為,,于是排除AD,又,所以C錯誤,B正確.故選:B.6、C【解析】根據(jù)三角函數(shù)圖象的平移變換求解即可.【詳解】由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向左平移個單位長度即可.故選:C7、B【解析】根據(jù)一元二次不等式的解集,利用根與系致的關系求出的值
,再計的值.【詳解】由不等式的解集是,所以是方程的兩個實數(shù)根.則,所以所以故選:B8、A【解析】根據(jù)二次根式的性質求出函數(shù)的定義域即可【詳解】由題意得:解得:﹣1<x≤2,故函數(shù)的定義域是(﹣1,2],故選A【點睛】本題考查了求函數(shù)的定義域問題,考查二次根式的性質,是一道基礎題.常見的求定義域的類型有:對數(shù),要求真數(shù)大于0即可;偶次根式,要求被開方數(shù)大于等于0;分式,要求分母不等于0,零次冪,要求底數(shù)不為0;多項式要求每一部分的定義域取交集.9、C【解析】根據(jù)“”是“”的充分不必要條件,可知是解集的真子集,然后根據(jù)真子集關系求解出的取值范圍.【詳解】因為,所以或,所以解集為,又因為“”是“”的充分不必要條件,所以是的真子集,所以,故選:C.【點睛】結論點睛:一般可根據(jù)如下規(guī)則判斷充分、必要條件:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)若是的充分不必要條件,則對應集合是對應集合的真子集;(3)若是的充分必要條件,則對應集合與對應集合相等;(4)若是的既不充分也不必要條件,則對應集合與對應集合互不包含.10、C【解析】先求出集合M和集合P,根據(jù)交集的定義,即得?!驹斀狻坑深}得,,則.故選:C【點睛】求兩個集合的交集并不難,要注意集合P是整數(shù)集。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設,則,代入解析式得;再由定義在上的奇函數(shù),即可求得答案.【詳解】不妨設,則,所以,又因為定義在上的奇函數(shù),所以,所以,即.故答案為:.12、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:213、,【解析】由全稱命題的否定即可得解.【詳解】因為命題為全稱命題,所以為“,”.故答案為:,.14、##【解析】先根據(jù)面面垂直,取△的外接圓圓心G,梯形的外接圓圓心F,分別過兩點作對應平面的垂線,找到交點為外接球球心,再通過邊長關系計算半徑,代入球的表面積公式即得結果.【詳解】如圖,取的中點,的中點,連,,在上取點,使得,由是邊長為4的等邊三角形,四邊形是等腰梯形,,可得,,即梯形的外接圓圓心為F,分別過點、作平面、平面的垂線,兩垂線相交于點,顯然點為四棱錐外接球的球心,由題可得,,,則四棱錐外接球的半徑,故四棱錐外接球的表面積為故答案為:.15、##【解析】利用指數(shù)的性質及已知條件求a、b的范圍,討論c的取值范圍,結合對數(shù)的性質求c的范圍【詳解】由,由,又,當時,,顯然不成立;當時,,不成立;當時,;綜上,.故答案為:16、【解析】利用兩角差的正切公式直接求值即可.【詳解】=故答案為【點睛】本題主要考查兩角差的正切公式,特殊角的三角函數(shù)值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】先計算正弦與正切,利用誘導公式化簡可得【詳解】若=,是第四象限角,則原式=.18、(1);(2).【解析】(1)利用誘導公式化簡可得,代入數(shù)據(jù),即可求得答案.(2)根據(jù)題意,可得,根據(jù)左右同時平方,利用的關系,結合的范圍,即可求得和的值,即可求得答案.【詳解】(1)利用誘導公式化簡可得,.(2)因為,所以,即,兩邊平方得1+2sinαcosα=,所以2sinαcosα=-,1-2sinαcosα=,即(sinα-cosα)2=,因為2sinαcosα=,,所以,所以sinα-cosα>0,所以sinα-cosα=,結合cosα+sinα=,解得sinα=,cosα=-,故sin2α-cosα=-(-)=.19、(1)f(x)=x2-2ax+1;(2);(3){m|或}【解析】(1)設x<0,則-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1,再根據(jù)函數(shù)的奇偶性化簡即得函數(shù)的解析式.(2)對a分兩種情況討論,利用二次函數(shù)的圖像和性質即得的表達式.(3)由題得或,解不等式組即得解.【詳解】(1)設x<0,則-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1.又因為f(x)為偶函數(shù),所以f(-x)=f(x),所以當x<0時,f(x)=x2-2ax+1.(2)當x[0,5],f(x)=x2+2ax+1,對稱軸x=-a,①當-a≥,即a≤-時,g(a)=f(0)=1;②當-a<,即a>-時,g(a)=f(5)=10a+26綜合以上.(3)由(2)知,當a≤-時,g(a)為常函數(shù),當a>-時,g(a)為一次函數(shù)且為增函數(shù)因為g(8m)=g(),所以有或,解得或,即m的取值集合為{m|或}【點睛】本題主要考查奇偶函數(shù)的解析式的求法,考查函數(shù)的最值的求法,考查函數(shù)的圖像和性質,意在考查學生對這些知識的掌握水平和分析推理能力.20、(1)4(2)【解析】(1)分類討論和兩種情況,由其單調(diào)性得出a的值;(2)令,結合一元二次方程根的分布得出t的取值范圍【小問1詳解】解:當時,,則,故沒有最小值當時,由,得,則在上單調(diào)遞減,在上單調(diào)遞增,故,即【小問2詳解】的圖象如圖所示令,則函數(shù)在上有2個零點,得解得,故t的取值范圍為21、(1)或;(2)點M的軌跡是以(4,2)為圓心,半徑為1的圓.【解析】⑴設直線的斜率為,求得直線的方程,再根據(jù)與圓相交的弦長為,求得圓心到直線的距離,求出即可得到直線的方程;⑵設出的坐標,確定動點之間坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:進一步全面深化經(jīng)濟體制改革研究
- 二零二五版車輛抵押反擔保車輛租賃管理協(xié)議3篇
- 二零二五年度新型節(jié)能樓頂廣告牌拆除與改造升級協(xié)議3篇
- 2025版建筑材料銷售結算合同范本2篇
- 2025年度苗木種植與鄉(xiāng)村旅游開發(fā)合同3篇
- 二零二五年度彩鋼屋面防水補漏工程合同2篇
- 二零二五年度出口交易磋商與合同訂立策略指南4篇
- 二零二五年度安全生產(chǎn)教育培訓機構合作協(xié)議2篇
- 2025年度美容院員工薪酬福利及績效管理合同
- 2025年度城市綠化工程監(jiān)理委托咨詢服務協(xié)議3篇
- 2024年安全教育培訓試題附完整答案(奪冠系列)
- 神農(nóng)架研學課程設計
- 文化資本與民族認同建構-洞察分析
- 2025新譯林版英語七年級下單詞默寫表
- 《錫膏培訓教材》課件
- 斷絕父子關系協(xié)議書
- 2021-2022學年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 中國傳統(tǒng)文化服飾文化
- 大氣污染控制工程 第四版
- 淺析商務英語中模糊語言的語用功能
- 工程勘察資質分級標準和工程設計資質分級標準
評論
0/150
提交評論