2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題含解析_第1頁
2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題含解析_第2頁
2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題含解析_第3頁
2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題含解析_第4頁
2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省衡水安龍實驗中學高二上數(shù)學期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.62.設是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則3.若方程表示焦點在y軸上的雙曲線,則實數(shù)m的取值范圍為()A. B.C. D.且4.已知某班有學生48人,為了解該班學生視力情況,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學生在樣本中,則樣本中另外一個學生的編號是()A.26 B.27C.28 D.295.古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關系是()A.相交 B.相離C.內(nèi)切 D.外切6.若的解集是,則等于()A.-14 B.-6C.6 D.147.已知拋物線的焦點為,為坐標原點,點在拋物線上,且,點是拋物線的準線上的一動點,則的最小值為().A. B.C. D.8.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=19.若函數(shù)的導函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.10.丹麥數(shù)學家琴生(Jensen)是世紀對數(shù)學分析做出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在上的導函數(shù)為,在上的導函數(shù)為,在上恒成立,則稱函數(shù)在上為“凹函數(shù)”.則下列函數(shù)在上是“凹函數(shù)”的是()A. B.C. D.11.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題12.直線與圓相交于點,點是坐標原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足約束條件,則的最小值為___________14.對于下面這個等式我們除了可以用等比數(shù)列的求和公式獲得,還可以用數(shù)學歸納法對其進行證明“”,那么在應用數(shù)學歸納法證明時,當驗證是否成立時,左邊的式子應該是_______15.某班名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______16.若方程表示的曲線是圓,則實數(shù)的k取值范圍是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體ABCEFG中,四邊形ACGE為平行四邊形,為等邊三角形,四邊形BCGF為梯形,H為線段BF的中點,,,,,,.(1)求證:平面平面BCGF;(2)求平面ABC與平面ACH夾角的余弦值.18.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.19.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標為-1,求直線l的方程20.(12分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:21.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD,,,且,,點E為棱PC的動點.(1)當點E是棱PC的中點時,求直線BE與平面PBD所成角的正弦值;(2)若E為棱PC上任一點,滿足,求二面角P-AB-E的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用正態(tài)分布的計算公式:,【詳解】且又故選:D2、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的3、A【解析】根據(jù)雙曲線定義,且焦點在y軸上,則可直接列出相關不等式.【詳解】若方程表示焦點在y軸上的雙曲線,則必有:,且解得:故選:4、B【解析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學生來自第三組,設其編號為,則,進而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學生來自第三組,設其編號為,則,所以,故選:B【點睛】本題考查系統(tǒng)抽樣的編號,屬于基礎題5、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關系,即可判斷兩圓的位置關系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A6、A【解析】由一元二次不等式的解集,結合根與系數(shù)關系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.7、A【解析】求出點坐標,做出關于準線的對稱點,利用連點之間相對最短得出為的最小值【詳解】解:拋物線的準線方程為,,到準線的距離為2,故點縱坐標為1,把代入拋物線方程可得不妨設在第一象限,則,點關于準線的對稱點為,連接,則,于是故的最小值為故選:A【點睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎題8、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯(lián)立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質(zhì)9、C【解析】根據(jù)題意,求出每個函數(shù)的導函數(shù),進而判斷答案.【詳解】對A,,為奇函數(shù);對B,,為奇函數(shù);對C,,為偶函數(shù);對D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.10、B【解析】根據(jù)“凹函數(shù)”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B11、D【解析】因為是真命題,是假命題,所以是假命題,選項A錯誤,是真命題,選項B錯誤,是假命題,選項C錯誤,是真命題,選項D正確,故選D.考點:真值表的應用.12、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,作出可行域,進而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:14、【解析】根據(jù)已知條件,結合數(shù)學歸納法的定義,即可求解.【詳解】當,,故此時式子左邊=.故答案為:.15、【解析】將每個矩形底邊的中點值乘以對應矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.16、【解析】根據(jù)二元二次方程表示圓的條件求解【詳解】由題意,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形內(nèi)角和可知即,又因為,再根據(jù)面面垂直的判定定理,即可證明結果;(2)取BC中點O,由(1)得:平面BCGF,,以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,利用空間向量求二面角,即可求出結果.【小問1詳解】證明:(1)在中,由正弦定理知:解得因為,所以又因為,所以所以又因為,所以直線平面ABC又因為平面BCGF所以平面平面BCGF【小問2詳解】解:取BC中點O,連結OA,OH,由(1)得:平面BCGF,則以O為原點,OB,OH,OA所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系在中,則,,平面ABC的一個法向量為設平面ACH的一個法向量為因為,所以,取,則設平面APD與平面PDF夾角為,所以.18、(1)3(2),【解析】(1)先求出函數(shù)的導數(shù),根據(jù)極值點可得導數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又19、(1);(2).【解析】(1)由拋物線的定義,結合已知有求p,寫出拋物線方程.(2)由題意設直線l為,聯(lián)立拋物線方程,應用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標為-1,∴,即,得,∴直線l的方程為.【點睛】關鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標值,應用韋達定理、中點公式求直線斜率,并寫出直線方程.20、(1)y=5x-1;(2)證明見解析【解析】(1)求出導函數(shù),求出切線的斜率,切點坐標,然后求切線方程(2)不等式化簡為.設,求出導函數(shù),判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后證明即可【詳解】解:(1)的定義域為,的導數(shù)由(1)可得,則切點坐標為,所求切線方程為(2)證明:即證.設,則,由,得當時,;當時,在上單調(diào)遞增,在上單調(diào)遞減,(1),即不等式成立,則原不等式成立21、(1)答案見解析;(2).【解析】(1)根據(jù)實數(shù)a的正負性,結合導數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過構造函數(shù),利用導數(shù)的性質(zhì)進行求解即可.【小問1詳解】當a≤0時,在(0,+∞)上恒成立;當a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調(diào)遞減;a>0時,f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關鍵點睛:運用常變量分離法利用導數(shù)的性質(zhì)是解題的關鍵.22、(1)(2)【解析】(1)由題意可得兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,利用空間向量求解,(2)設,表示出點的坐標,然后根據(jù)求出的值,從而可得點的坐標,然后利用空間向量求二面角【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論