江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題含解析_第1頁
江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題含解析_第2頁
江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題含解析_第3頁
江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題含解析_第4頁
江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省新建一中2025屆數(shù)學高二上期末復(fù)習檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且平行于直線的直線的方程為()A. B.C. D.2.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.3.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.4.已知拋物線的方程為,則此拋物線的準線方程為()A. B.C. D.5.公元前6世紀,古希臘的畢達哥拉斯學派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.6.已知“”的必要不充分條件是“或”,則實數(shù)的最小值為()A. B.C. D.7.已知拋物線的焦點為F,,點是拋物線上的動點,則當?shù)闹底钚r,=()A.1 B.2C. D.48.已知全集,集合,,則()A. B.C. D.9.已知橢圓上一點到橢圓一個焦點的距離是,則點到另一個焦點的距離為()A.2 B.3C.4 D.510.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或11.設(shè)是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.12.某中學的校友會為感謝學校的教育之恩,準備在學校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側(cè)面與底面所成的二面角為30°,側(cè)棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側(cè)面積為平方米 D.側(cè)棱與底面所成角的正弦值為二、填空題:本題共4小題,每小題5分,共20分。13.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.14.已知隨機變量X服從正態(tài)分布,若,則______15.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.16.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列公差不為0,且成等比數(shù)列.(1)求數(shù)列的通項公式及其前n項和;(2)記,求數(shù)列的前n項和.18.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數(shù)的取值范圍.19.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標;(2)若點到拋物線的焦點的距離是5,求的值.20.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的解析式及單調(diào)遞減區(qū)間;(2)若函數(shù)無零點,求的取值范圍21.(12分)自疫情爆發(fā)以來,由于黨和國家對抗疫工作高度重視,在人民群眾的不懈努力下,我國抗疫工作取得階段性成功,國家經(jīng)濟很快得到復(fù)蘇.在餐飲業(yè)恢復(fù)營業(yè)后,某快餐店統(tǒng)計了近天內(nèi)每日接待的顧客人數(shù),將前天的數(shù)據(jù)進行整理得到頻率分布表和頻率分布直方圖.組別分組頻數(shù)頻率第組第組第組第組第組合計(1)求、、的值,并估計該快餐店在前天內(nèi)每日接待的顧客人數(shù)的平均數(shù);(2)已知該快餐店在前50天內(nèi)每日接待的顧客人數(shù)的方差為,在后天內(nèi)每日接待的顧客人數(shù)的平均數(shù)為、方差為,估計這家快餐店這天內(nèi)每日接待的顧客人數(shù)的平均數(shù)和方差.()22.(10分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)平行設(shè)直線方程,代入點計算得到答案.【詳解】設(shè)直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.2、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A3、A【解析】根據(jù)(為弦長,為圓半徑,為圓心到直線的距離),求解出的關(guān)系式,結(jié)合求解出離心率的值.【詳解】取的一條漸近線,因為(為弦長,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點睛】關(guān)鍵點點睛:解答本題的關(guān)鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關(guān)系.4、A【解析】由拋物線的方程直接寫出其準線方程即可.【詳解】由拋物線的方程為,則其準線方程為:故選:A5、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因為雙曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A6、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數(shù)的最小值為.故選:A7、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點坐標,即可求解.【詳解】由題知,拋物線的準線方程為,,過P作垂直于準線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設(shè)所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關(guān)鍵點睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,解題的關(guān)鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學生的轉(zhuǎn)化思想與運算求解能力,屬于中檔題.8、A【解析】先求,然后求.【詳解】,,.故選:A9、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個焦點分別為,故可得,又到橢圓一個焦點的距離是,故點到另一個焦點的距離為.故選:.10、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設(shè)直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設(shè)直線方程為,即,由,得,直線方程為,即故選:D11、C【解析】設(shè),由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構(gòu)建齊次不等式,解出即可【詳解】設(shè),由,因為,,所以,因為,當,即時,,即,符合題意,由可得,即;當,即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關(guān)鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調(diào)性從而確定最值12、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側(cè)面與底面所成,設(shè)正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質(zhì),可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設(shè)正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側(cè)面積為,故選項C正確.由題意為側(cè)棱與底面所成角,則,故選項D不正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】根據(jù)題意,設(shè),進而根據(jù)中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設(shè),則,則,即,因為,則,即的軌跡方程為.14、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.15、【解析】按題意求得,兩點坐標,以代數(shù)式表達出條件,即可得到關(guān)于的關(guān)系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:16、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點:棱柱、棱錐、棱臺的體積三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)分式的合分比性質(zhì)以及等差數(shù)列的性質(zhì)即可求出;(2)根據(jù)裂項相消法即可求出【小問1詳解】由題意:,即,又∵,∴,∴,∴,.【小問2詳解】因為,∴.18、(1)(2)【解析】(1)運用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設(shè),,,,,,當時,,此時A,B關(guān)于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯(lián)立與橢圓方程,可得,可得,化為,,,①,設(shè)的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本題主要考查橢圓的方程以及直線和橢圓的位置關(guān)系的應(yīng)用,利用消元法轉(zhuǎn)化為一元二次方程形式是解決本題的關(guān)鍵.19、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標;(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標的求法,考查拋物線的定義和幾何性質(zhì),意在考查學生對這些知識的理解掌握水平.20、(1)單調(diào)減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導(dǎo)數(shù),令導(dǎo)數(shù)小于0,可得減區(qū)間;(2)先求得,要使函數(shù)無零點,即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù),對其求導(dǎo),然后對進行分類討論,運用單調(diào)性和函數(shù)零點存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時,,由或,所以函數(shù)的單調(diào)減區(qū)間為和.(2),且定義域為,要函數(shù)無零點,即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù).①當時,在內(nèi)恒成立,所以函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減.又,所以在內(nèi)無零點,在內(nèi)也無零點,故滿足條件;②當時,⑴若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以在內(nèi)無零點;易知,而,故在內(nèi)有一個零點,所以不滿足條件;⑵若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以時,恒成立,故無零點,滿足條件;⑶若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,在內(nèi)也單調(diào)遞增.又,所以在及內(nèi)均無零點.又易知,而,又易證當時,,所以函數(shù)在內(nèi)有一零點,故不滿足條件.綜上可得:的取值范圍為:或.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的零點問題、其中分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題,解答本題,準確求導(dǎo)數(shù)是基礎(chǔ),恰當分類討論是關(guān)鍵,易錯點是分類討論不全面、不徹底、不恰當,或因復(fù)雜式子變形能力差,而錯漏百出.本題能較好的考查考生的邏輯思維能力、基本計算能力、分類討論思想等21、(1),,,平均數(shù)為;(2)平均數(shù)為,方差為.【解析】(1)計算出第組的頻數(shù),可求得的值,利用頻數(shù)、頻率和總數(shù)的關(guān)系可求出的值,求出第組的頻率,除以組距可得的值,利用平均數(shù)公式可求得該快餐店在前天內(nèi)每日接待的顧客人數(shù)的平均數(shù);(2)設(shè)前天接待的顧客人數(shù)分別為、、、,后天接待的顧客人數(shù)分別為、、、,利用平均數(shù)公式和方差公式可求得結(jié)果.【小問1詳解】解:由表可知第組的頻數(shù)為,所以,,,第組的頻率為,,前天內(nèi)每日接待的顧客人數(shù)的平均數(shù)為:.【小問2詳解】解:設(shè)前天接待的顧客人數(shù)分別為、、、,后天接待的顧客人數(shù)分別為、、、,則由(1)知前天的平均數(shù),方差,后天的平均數(shù),方差,故這天的平均數(shù)為,,同理,這天的方差,由以上三式可得.22、(1);(2).【解析】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論