![西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁](http://file4.renrendoc.com/view8/M00/26/2F/wKhkGWchNnCAHlRGAAHyeJSRXos446.jpg)
![西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁](http://file4.renrendoc.com/view8/M00/26/2F/wKhkGWchNnCAHlRGAAHyeJSRXos4462.jpg)
![西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁](http://file4.renrendoc.com/view8/M00/26/2F/wKhkGWchNnCAHlRGAAHyeJSRXos4463.jpg)
![西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁](http://file4.renrendoc.com/view8/M00/26/2F/wKhkGWchNnCAHlRGAAHyeJSRXos4464.jpg)
![西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁](http://file4.renrendoc.com/view8/M00/26/2F/wKhkGWchNnCAHlRGAAHyeJSRXos4465.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
西藏自治區(qū)昌都市第三高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.02.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.53.下列命題中,真命題的個數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個4.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D5.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.6.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或7.已知曲線與直線總有公共點,則m的取值范圍是()A. B.C. D.8.拋物線準(zhǔn)線方程為()A. B.C. D.9.已知雙曲線的右焦點為F,關(guān)于原點對稱的兩點A、B分別在雙曲線的左、右兩支上,,且點C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.10.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.11.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則12.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項和為,則該數(shù)列的通項公式___________14.傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).用一點(或一個小石子)代表1,兩點(或兩個小石子)代表2,三點(或三個小石子)代表3,…他們研究了各種平面數(shù)(包括三角形數(shù)、正方形數(shù)、長方形數(shù)、五邊形數(shù)、六邊形數(shù)等等)和立體數(shù)(包括立方數(shù)、棱錐數(shù)等等).如前四個四棱錐數(shù)為第n個四棱錐數(shù)為1+4+9+…+n2=.中國古代也有類似的研究,如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《詳解九章算法?商功》中,后人稱為“三角垛”.“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球,…若一個“三角垛”共有20層,則第6層有____個球,這個“三角垛”共有______個球15.在平面幾何中有如下結(jié)論:若正三角形的內(nèi)切圓周長為,外接圓周長為,則.推廣到空間幾何可以得到類似結(jié)論:若正四面體的內(nèi)切球表面積為,外接球表面積為,則__________16.在正三棱柱中,,點P滿足,其中,,則下列說法中,正確的有_________(請?zhí)钊胨姓_說法的序號)①當(dāng)時,的周長為定值②當(dāng)時,三棱錐的體積為定值③當(dāng)時,有且僅有一個點P,使得④當(dāng)時,有且僅有一個點P,使得平面三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.18.(12分)若存在常數(shù),使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設(shè),,試判斷A、B是否為有界集合,并說明理由;(2)已知常數(shù),若函數(shù)為有界集合,求集合的上界最小值.19.(12分)已知直線經(jīng)過點,,直線經(jīng)過點,且.(1)分別求直線,的方程;(2)設(shè)直線與直線的交點為,求外接圓的方程.20.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點21.(12分)如圖所示,在正方體中,E是棱的中點.(Ⅰ)求直線BE與平面所成的角的正弦值;(Ⅱ)在棱上是否存在一點F,使平面?證明你的結(jié)論.22.(10分)已知數(shù)列的前n項和為,,且(1)求數(shù)列的通項公式;(2)令,記數(shù)列的前n項和為,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對結(jié)論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結(jié)論為2個故選:B2、C【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】作出可行域如圖所示,把目標(biāo)函數(shù)轉(zhuǎn)化為,平移,經(jīng)過點時,縱截距最大,所以的最大值為4.故選:C3、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設(shè)點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.4、A【解析】由已知,分別表示出選項對應(yīng)的向量,然后利用平面向量共線定理進行判斷即可完成求解.【詳解】因,,,選項A,,,若A,B,D三點共線,則,即,解得,故該選項正確;選項B,,,若A,B,C三點共線,則,即,解得不存,故該選項錯誤;選項C,,,若B,C,D三點共線,則,即,解得不存在,故該選項錯誤;選項D,,,若A,C,D三點共線,則,即,解得不存在,故該選項錯誤;故選:A.5、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A6、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.7、D【解析】對曲線化簡可知曲線表示以點為圓心,2為半徑的圓的下半部分,對直線方程化簡可得直線過定點,畫出圖形,由圖可知,,然后求出直線的斜率即可【詳解】由,得,因為,所以曲線表示以點為圓心,2為半徑的圓的下半部分,由,得,所以,得,所以直線過定點,如圖所示設(shè)曲線與軸的兩個交點分別為,直線過定點,為曲線上一動點,根據(jù)圖可知,若曲線與直線總有公共點,則,得,設(shè)直線為,則,解得,或,所以,所以,所以,故選:D8、D【解析】由拋物線的準(zhǔn)線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準(zhǔn)線方程為故選D【點睛】本題主要考查了拋物線的準(zhǔn)線方程,屬于基礎(chǔ)題9、D【解析】設(shè),由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設(shè),則,,,因為,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D10、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B11、B【解析】A.運用線面平行的性質(zhì),結(jié)合線線的位置關(guān)系,即可判斷;B.運用線面垂直的性質(zhì),即可判斷;C.運用線面垂直的性質(zhì),結(jié)合線線垂直和線面平行的位置即可判斷;D.運用線面平行的性質(zhì)和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯;B.若m⊥α,,由線面垂直的性質(zhì)定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯;D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯故選B【點睛】本題考查空間直線與平面的位置關(guān)系,考查直線與平面的平行、垂直的判斷與性質(zhì),記熟定理是解題的關(guān)鍵,注意觀察空間的直線與平面的模型12、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當(dāng)時,則恒成立,當(dāng)時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)與關(guān)系求解即可.【詳解】當(dāng)時,,當(dāng)時,,檢驗:,所以.故答案為:14、①.21②.1540【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到=,由此可求的值,以及前20層的總球數(shù)【詳解】由題意可知,,故==,所==21,所以S20=a1+a2+a3+a4+??+a20=(12+22+32+??+202)+(1+2+3+??+20)=×+×=1540故答案為:21;154015、【解析】分析:平面圖形類比空間圖形,二維類比三維得到,類比平面幾何的結(jié)論,確定正四面體的外接球和內(nèi)切球的半徑之比,即可求得結(jié)論.詳解:平面幾何中,圓的周長與圓的半徑成正比,而在空間幾何中,球的表面積與半徑的平方成正比,因為正四面體的外接球和內(nèi)切球的半徑之比是,,故答案為.點睛:本題主要考查類比推理,屬于中檔題.類比推理問題,常見的類型有:(1)等差數(shù)列與等比數(shù)列的類比;(2)平面與空間的類比;(3)橢圓與雙曲線的類比;(4)復(fù)數(shù)與實數(shù)的類比;(5)向量與數(shù)的類比.16、②④【解析】①結(jié)合得到P在線段上,結(jié)合圖形可知不同位置下周長不同;②由線面平行得到點到平面距離不變,故體積為定值;③結(jié)合圖形得到不同位置下有,判斷出③錯誤;④結(jié)合圖形得到有唯一的點P,使得線面垂直.【詳解】由題意得:,,,所以P為正方形內(nèi)一點,①,當(dāng)時,,即,,所以P在線段上,所以周長為,如圖1所示,當(dāng)點P在處時,,故①錯誤;②,如圖2,當(dāng)時,即,即,,所以P在上,,因為∥BC,平面,平面,所以點P到平面距離不變,即h不變,故②正確;③,當(dāng)時,即,如圖3,M為中點,N為BC的中點,P是MN上一動點,易知當(dāng)時,點P與點N重合時,由于△ABC為等邊三角形,N為BC中點,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因為平面,則,當(dāng)時,點P與點M重合時,可證明出⊥平面,而平面,則,即,故③錯誤;④,當(dāng)時,即,如圖4所示,D為的中點,E為的中點,則P為DE上一動點,易知,若平面,只需即可,取的中點F,連接,又因為平面,所以,若,只需平面,即即可,如圖5,易知當(dāng)且僅當(dāng)點P與點E重合時,故只有一個點P符合要求,使得平面,故④正確.故選:②④【點睛】立體幾何的壓軸題,通常情況下要畫出圖形,利用線面平行,線面垂直及特殊點,特殊值進行排除選項,或者用等體積法進行轉(zhuǎn)化等思路進行解決.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.18、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據(jù)指數(shù)函數(shù)的性質(zhì)求得集合B,由此可得結(jié)論;(2)由函數(shù),得出函數(shù)單調(diào)遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數(shù)的單調(diào)性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對任意一個,都有一個,故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因為,所以函數(shù)單調(diào)遞減,,因為函數(shù)為有界集合,所以分兩種情況討論:當(dāng),即時,集合的上界,當(dāng)時,不等式為;當(dāng)時,不等式為;當(dāng)時,不等式為,即時,集合的上界,當(dāng),即時,集合的上界,同上解不等式得的解為,即時,集合的上界,綜上得時,集合的上界;時,集合的上界.時,集合的上界是一個減函數(shù),所以此時,時,集合的上界是增函數(shù),所以,所以集合的上界最小值為;19、(1);(2).【解析】(1)根據(jù)兩點式即可求出直線l1的方程,根據(jù)直線垂直的關(guān)系即可求l2的方程;(2)先求出C點坐標(biāo),通過三角形的長度關(guān)系知道三角形是以AC為斜邊長的直角三角形,故AC的中點即為外心,AC即為直徑.解析:(1)∵直線經(jīng)過點,,∴,設(shè)直線的方程為,∴,∴.(2),即:,∴,的中點為,∴的外接圓的圓心為,半徑為,∴外接圓的方程為:.點睛:這個題目考查的是已知兩直線位置關(guān)系求參的問題,還考查了三角形外接圓的問題.對于三角形為外接圓,圓心就是各個邊的中垂線的交點,鈍角三角形外心在三角形外側(cè),銳角三角形圓心在三角形內(nèi)部,直角三角形圓心在直角三角形斜邊的中點20、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年五股東共同投資協(xié)議文本
- 2025年新型可控氣氛爐項目申請報告模稿
- 2025年醫(yī)療行業(yè)信息共享合同樣式
- 2025年創(chuàng)意企業(yè)合作協(xié)議標(biāo)準(zhǔn)文本
- 2025年分期付款合同服務(wù)全方位指南
- 2025年供應(yīng)商與采購商海鮮交易合同
- 2025年酸堿平衡調(diào)節(jié)藥項目規(guī)劃申請報告
- 2025年廢棄土地資源化合同
- 2025年專利申請買賣雙方協(xié)議
- 2025年人才選拔與委托合作協(xié)議標(biāo)準(zhǔn)文本
- 2024年徐州工業(yè)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2025年春新人教版語文一年級下冊全冊課件
- 2025年春新北師大版數(shù)學(xué)七年級下冊全冊教案
- 第七章老年人泌尿系統(tǒng)疾病
- 2025年枝江金潤源建設(shè)集團招聘筆試參考題庫含答案解析
- 危險化學(xué)品安全監(jiān)管培訓(xùn)
- 病原生物學(xué)-人體寄生蟲學(xué)知到智慧樹章節(jié)測試課后答案2024年秋浙江大學(xué)
- 校園安全案例解析
- 2024-2030年中國醫(yī)療建筑工程行業(yè)發(fā)展?jié)摿巴顿Y戰(zhàn)略規(guī)劃分析報告
- 人工智能導(dǎo)論知到智慧樹章節(jié)測試課后答案2024年秋天津大學(xué)
- 校史館裝修工程施工方案
評論
0/150
提交評論