版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省開封十中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某校去年有1100名同學(xué)參加高考,從中隨機(jī)抽取50名同學(xué)總成績(jī)進(jìn)行分析,在這個(gè)調(diào)查中,下列敘述錯(cuò)誤的是A.總體是:1100名同學(xué)的總成績(jī) B.個(gè)體是:每一名同學(xué)C.樣本是:50名同學(xué)的總成績(jī) D.樣本容量是:502.已知數(shù)列中,其前項(xiàng)和為,且滿足,數(shù)列的前項(xiàng)和為,若對(duì)恒成立,則實(shí)數(shù)的值可以是()A. B.2C.3 D.3.在某次賽車中,名參賽選手的成績(jī)(單位:)全部介于到之間(包括和),將比賽成績(jī)分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績(jī)?cè)趦?nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.4.在等差數(shù)列中,其前項(xiàng)和為.若,是方程的兩個(gè)根,那么的值為()A.44 B.C.66 D.5.點(diǎn)A是曲線上任意一點(diǎn),則點(diǎn)A到直線的最小距離為()A. B.C. D.6.拋物線的焦點(diǎn)坐標(biāo)A. B.C. D.7.如圖,在平行六面體中,M為與的交點(diǎn),若,,,則下列向量中與相等的向量是()A. B.C. D.8.若,則()A.1 B.2C.4 D.89.已知數(shù)列滿足,,則()A. B.C. D.10.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A B.C. D.11.已知正三棱柱的側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.12.某次數(shù)學(xué)考試試卷評(píng)閱采用“雙評(píng)+仲裁”的方式,規(guī)則如下:兩位老師獨(dú)立評(píng)分,稱為一評(píng)和二評(píng),當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值小于或等于分時(shí),取兩者平均分為該題得分;當(dāng)兩者所評(píng)分?jǐn)?shù)之差的絕對(duì)值大于分時(shí),再由第三位老師評(píng)分,稱之為仲裁,取仲裁分?jǐn)?shù)和一、二評(píng)中與之接近的分?jǐn)?shù)的平均分為該題得分.如圖所示,當(dāng),,時(shí),則()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.甲乙參加摸球游戲,袋子中裝有3個(gè)黑球和1個(gè)白球,球的大小、形狀、質(zhì)量等均一樣,若從袋中有放回地取1個(gè)球,再取1個(gè)球,若取出的兩個(gè)球同色,則甲勝,若取出的兩個(gè)球不同色則乙勝,求乙獲勝的概率為_____14.已知直線l是拋物線()的準(zhǔn)線,半徑為的圓過拋物線的頂點(diǎn)O和焦點(diǎn)F,且與l相切,則拋物線C的方程為___________;若A為C上一點(diǎn),l與C的對(duì)稱軸交于點(diǎn)B,在中,,則的值為___________.15.寫出一個(gè)離心率且焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程________,并寫出該雙曲線的漸近線方程________16.若向量,,,且向量,,共面,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)求直線的普通方程,曲線C的直角坐標(biāo)方程;(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),點(diǎn),求的值.18.(12分)已知橢圓:的一個(gè)焦點(diǎn)與曲線的焦點(diǎn)重合,且離心率為.(1)求橢圓的方程(2)設(shè)直線:交橢圓于M,N兩點(diǎn).①若且的面積為,求的值.②若軸上的任意一點(diǎn)到直線與直線(為橢圓的右焦點(diǎn))的距離相等,求證:直線恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo)19.(12分)設(shè):函數(shù)的定義域?yàn)?;:不等式?duì)任意的恒成立(1)如果是真命題,求實(shí)數(shù)的取值范圍;(2)如果“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍20.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時(shí),直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且|AB|=時(shí),求直線l的方程.21.(12分)如圖所示,在正方體中,點(diǎn),,分別是,,的中點(diǎn)(1)證明:;(2)求直線與平面所成角的大小22.(10分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點(diǎn),(1)證明:;(2)設(shè)平面平面,求l與平面MND所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】采用逐一驗(yàn)證法,根據(jù)總體,個(gè)體,樣本的概念,可得結(jié)果.【詳解】據(jù)題意:總體是1100名同學(xué)的總成績(jī),故A正確個(gè)體是每名同學(xué)的總成績(jī),故B錯(cuò)樣本是50名同學(xué)的總成績(jī),故C正確樣本容量是:50,故D正確故選:B【點(diǎn)睛】本題考查總體,個(gè)體,樣本的概念,屬基礎(chǔ)題.2、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因?yàn)閷?duì)恒成立,當(dāng)時(shí),則恒成立,當(dāng)時(shí),,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對(duì)恒成立,必須滿足.故選:D3、A【解析】先根據(jù)頻率分布直方圖確定成績(jī)?cè)趦?nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績(jī)?cè)趦?nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.4、D【解析】由,是方程的兩個(gè)根,利用韋達(dá)定理可知與的和,根據(jù)等差數(shù)列的性質(zhì)可得與的和等于,即可求出的值,然后再利用等差數(shù)列的性質(zhì)可知等于的11倍,把的值代入即可求出的值.【詳解】因?yàn)?,是方程的兩個(gè)根,所以,而,所以,則,故選:.5、A【解析】動(dòng)點(diǎn)在曲線,則找出曲線上某點(diǎn)的斜率與直線的斜率相等的點(diǎn)為距離最小的點(diǎn),利用導(dǎo)數(shù)的幾何意義即可【詳解】不妨設(shè),定義域?yàn)椋簩?duì)求導(dǎo)可得:令解得:(其中舍去)當(dāng)時(shí),,則此時(shí)該點(diǎn)到直線的距離為最小根據(jù)點(diǎn)到直線的距離公式可得:解得:故選:A6、B【解析】由拋物線方程知焦點(diǎn)在x軸正半軸,且p=4,所以焦點(diǎn)坐標(biāo)為,所以選B7、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點(diǎn),,,,則有:,所以.故選:A8、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.9、A【解析】根據(jù)遞推關(guān)系依次求出即可.【詳解】,,,,,.故選:A.10、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.11、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設(shè)棱長(zhǎng)為,則,故,.點(diǎn)睛:本題主要考查空間立體幾何直線與平面的位置關(guān)系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構(gòu)特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個(gè)重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.12、B【解析】按照框圖考慮成立和不成立即可求解.【詳解】因?yàn)?,,,所以輸入,?dāng)成立時(shí),,即,解得,,滿足條件;當(dāng)不成立時(shí),,即,解得,,不滿足條件;故.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計(jì)算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:14、①.②.【解析】(1)由題意得:圓的圓心橫坐標(biāo)為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點(diǎn)的坐標(biāo),即可得到答案;【詳解】由題意得:圓的圓心橫坐標(biāo)為,半徑為,,拋物線C的方程為;設(shè)到準(zhǔn)線的距離為,,,,,代入,解得:,,,故答案為:;15、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個(gè)符合要求的雙曲線方程,進(jìn)而寫出對(duì)應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個(gè)標(biāo)準(zhǔn)方程,此時(shí)漸近線方程為.故答案為:,(答案不唯一).16、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因?yàn)?,,共面,所以存在?shí)數(shù)x,y,使得,得,解得∴故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)直線的普通方程為;曲線C的直角坐標(biāo)方程為(2)【解析】(1)根據(jù)轉(zhuǎn)換關(guān)系將參數(shù)方程和極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程即可;(2)將直線的參數(shù)方程化為標(biāo)準(zhǔn)形式,代入曲線C的直角坐標(biāo)方程,設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,利用韋達(dá)定理即可得出答案.【小問1詳解】解:將直線的參數(shù)方程中的參數(shù)消去得,則直線的普通方程為,由曲線C的極坐標(biāo)方程為,得,即,由得曲線C的直角坐標(biāo)方程為;【小問2詳解】解:點(diǎn)滿足,故點(diǎn)在直線上,將直線的參數(shù)方程化為標(biāo)準(zhǔn)形式(為參數(shù)),代入曲線C的直角坐標(biāo)方程為,得,設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,則,所以.18、(1)(2)①;②證明見解析,定點(diǎn)的坐標(biāo)為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達(dá)定理整體思想,列出關(guān)于的方程從而得解;②由已知可知,得到關(guān)于、的一次關(guān)系式可得證.【小問1詳解】由已知橢圓的右焦點(diǎn)坐標(biāo)為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設(shè),,則,解得,∴,,點(diǎn)到直線的距離為,∴,解得(舍去負(fù)值),∴.②設(shè),,將與橢圓方程聯(lián)立,得,當(dāng)時(shí),∴,,,若軸上任意一點(diǎn)到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過一定點(diǎn),該定點(diǎn)的坐標(biāo)為.19、(1)(2)【解析】(1)由對(duì)數(shù)函數(shù)性質(zhì),轉(zhuǎn)化為對(duì)任意的恒成立,結(jié)合二次函數(shù)的性質(zhì),即可求解;(2)利用基本不等式,求得當(dāng)命題是真命題,得到,結(jié)合“”為真命題,“”為假命題,分類討論,即可求解.【小問1詳解】解:因?yàn)槭钦婷},所以對(duì)任意的恒成立,當(dāng)時(shí),不等式,顯然在不能恒成立;當(dāng)時(shí),則滿足解得,故實(shí)數(shù)的取值范圍為【小問2詳解】解:因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立若是真命題,則;因?yàn)椤啊睘檎婷},“”為假命題,所以與一真一假當(dāng)真假時(shí),所以;當(dāng)假真時(shí),所以,綜上,實(shí)數(shù)的取值范圍為20、(1);(2)或.【解析】(1)由題設(shè)可得圓心為,半徑,根據(jù)直線與圓的相切關(guān)系,結(jié)合點(diǎn)線距離公式列方程求參數(shù)a的值即可.(2)根據(jù)圓中弦長(zhǎng)、半徑與弦心距的幾何關(guān)系列方程求參數(shù)a,即可得直線方程.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線距離,即,可得:.【小問2詳解】由(1)知:圓心到直線的距離,因?yàn)?,即,解得:,所以,整理得:,解得:或,則直線為或.21、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因?yàn)?,分別是,的中點(diǎn),所以且又因?yàn)槭堑闹悬c(diǎn),所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因?yàn)椋?,所以令,得設(shè)直線與平面所成角為,則因?yàn)椋灾本€與平面所成角的大小為22、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)保技術(shù)改造項(xiàng)目合同3篇
- 2025版煤炭物流倉(cāng)儲(chǔ)一體化服務(wù)合同模板4篇
- 2024珠寶銷售合同
- 2025年度高新技術(shù)企業(yè)研發(fā)費(fèi)用加計(jì)扣除代理合同3篇
- 2025年度銷售合同信息共享與部門協(xié)同辦公2篇
- 2025年度XX農(nóng)業(yè)廢棄物資源化利用與污水處理合同3篇
- 2024水電站電力輸出及銷售合同協(xié)議
- 2025年度環(huán)保型廠房出租與能源管理一體化服務(wù)合同3篇
- 二零二五年齡上限勞動(dòng)合同規(guī)范樣本2篇
- 二零二五年度風(fēng)景名勝區(qū)草坪修剪與修復(fù)合同3篇
- MT/T 199-1996煤礦用液壓鉆車通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗(yàn)第1部分:桌類強(qiáng)度和耐久性
- 第三方在線糾紛解決機(jī)制(ODR)述評(píng),國(guó)際商法論文
- 第5章-群體-團(tuán)隊(duì)溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團(tuán)南部區(qū)域養(yǎng)護(hù)標(biāo)準(zhǔn)圖例
- 排水許可申請(qǐng)表
- 低血糖的觀察和護(hù)理課件
- 計(jì)量檢定校準(zhǔn)技術(shù)服務(wù)合同協(xié)議書
評(píng)論
0/150
提交評(píng)論