版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東省鄒城第一中學(xué)高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用二分法求方程的近似解時,可以取的一個區(qū)間是()A. B.C. D.2.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知向量(2,3),(x,2),且⊥,則|23|=()A.2 B.C.12 D.134.實驗測得四組(x,y)的值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為()A.B.C.D.5.定義在上的函數(shù)滿足下列三個條件:①;②對任意,都有;③的圖像關(guān)于軸對稱.則下列結(jié)論中正確的是AB.C.D.6.已知關(guān)于的方程()的根為負數(shù),則的取值范圍是()A. B.C. D.7.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.8.函數(shù)的圖象可能是A. B.C. D.9.已知,設(shè)函數(shù),的最大值為A,最小值為B,那么A+B的值為()A.4042 B.2021C.2020 D.202410.若,則()A. B.-3C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知各頂點都在一個球面上的正四棱柱高為4,體積為16,則這個球的表面積是________.12.冪函數(shù)的圖象經(jīng)過點,則=____.13.已知函數(shù),若,則實數(shù)_________14.設(shè)函數(shù)的圖象為,則下列結(jié)論中正確的是__________(寫出所有正確結(jié)論的編號).①圖象關(guān)于直線對稱;②圖象關(guān)于點對稱;③函數(shù)在區(qū)間內(nèi)是增函數(shù);④把函數(shù)的圖象上點的橫坐標(biāo)縮短為原來的一半(縱坐標(biāo)不變)可以得到圖象.15.如圖,在平面直角坐標(biāo)系中,矩形的頂點、分別在軸非負半軸和軸的非負半軸上滑動,頂點在第一象限內(nèi),,,設(shè).若,則點的坐標(biāo)為______;若,則的取值范圍為______.16.已知函數(shù)和函數(shù)的圖像相交于三點,則的面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若是偶函數(shù),求a值;(2)若對任意,不等式恒成立,求a的取值范圍18.已知函數(shù)(Ⅰ)求的最小正周期及對稱軸方程;(Ⅱ)當(dāng)時,求函數(shù)的最大值、最小值,并分別求出使該函數(shù)取得最大值、最小值時的自變量的值.19.已知集合,集合.(1)求.(2)求,求的取值范圍.20.如圖,是平面四邊形的對角線,,,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.(1)求證:平面;(2)求點到平面的距離.21.已知函數(shù).(1)求;(2)設(shè),,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】構(gòu)造函數(shù)并判斷其單調(diào)性,借助零點存在性定理即可得解.【詳解】,令,在上單調(diào)遞增,并且圖象連續(xù),,,在區(qū)間內(nèi)有零點,所以可以取的一個區(qū)間是.故選:B2、A【解析】根據(jù)終邊相同的角的三角函數(shù)值相等,結(jié)合充分不必要條件的定義,即可得到答案;【詳解】,當(dāng),“”是“”的充分不必要條件,故選:A3、D【解析】由,可得,由向量加法可得,再結(jié)合向量模的運算即可得解.【詳解】解:由向量(2,3),(x,2),且,則,即,即,所以,所以,故選:D.【點睛】本題考查了向量垂直的坐標(biāo)運算,重點考查了向量加法及模的運算,屬基礎(chǔ)題.4、A【解析】根據(jù)所給數(shù)據(jù),求出樣本中心點,把樣本中心點代入所給四個選項中驗證,即可得答案【詳解】解:由已知可得,所以這組數(shù)據(jù)的樣本中心點為,因樣本中心必在回歸直線上,所以把樣本中心點代入四個選項中驗證,可得只有成立,故選:A.5、D【解析】先由,得函數(shù)周期為6,得到f(7)=f(1);再利用y=f(x+3)的圖象關(guān)于y軸對稱得到y(tǒng)=f(x)的圖象關(guān)于x=3軸對稱,進而得到f(1)=f(5);最后利用條件(2)得出結(jié)論因為,所以;即函數(shù)周期為6,故;又因為的圖象關(guān)于y軸對稱,所以的圖象關(guān)于x=3對稱,所以;又對任意,都有;所以故選:D考點:函數(shù)的奇偶性和單調(diào)性;函數(shù)的周期性.6、D【解析】分類參數(shù),將問題轉(zhuǎn)化為求函數(shù)在的值域,再利用指數(shù)函數(shù)的性質(zhì)進行求解.【詳解】將化為,因為關(guān)于的方程()的根為負數(shù),所以的取值范圍是在的值域,當(dāng)時,,則,即的取值范圍是.故選:D.7、A【解析】由圖象確定以及周期,進而得出,再由得出的值.【詳解】顯然因為,所以,所以由得所以,即,因為,所以所以.故選:A【點睛】本題主要考查了由函數(shù)圖象確定正弦型函數(shù)的解析式,屬于中檔題.8、C【解析】函數(shù)即為對數(shù)函數(shù),圖象類似的圖象,位于軸的右側(cè),恒過,故選:9、D【解析】由已知得,令,則,由的單調(diào)性可求出最大值和最小值的和為,即可求解.【詳解】函數(shù)令,∴,又∵在,時單調(diào)遞減函數(shù);∴最大值和最小值的和為,函數(shù)的最大值為,最小值為;則;故選:10、B【解析】利用同角三角函數(shù)關(guān)系式中的商關(guān)系進行求解即可.【詳解】由,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】正四棱柱的高是4,體積是16,則底面邊長為2,底面正方形的對角線長度為,所以正四棱柱體對角線的長度為,四棱柱體對角線為外接球的直徑,所以球的半徑為,所以球的表面積為考點:正四棱柱外接球表面積12、2【解析】根據(jù)冪函數(shù)過點,求出解析式,再有解析式求值即可.【詳解】設(shè),則,所以,故,所以.故答案為:13、【解析】分和求解即可.【詳解】當(dāng)時,,所以(舍去);當(dāng)時,,所以(符合題意).故答案為:.14、①③【解析】圖象關(guān)于直線對稱;所以①對;圖象關(guān)于點對稱;所以②錯;,所以函數(shù)在區(qū)間內(nèi)是增函數(shù);所以③對;因為把函數(shù)的圖象上點的橫坐標(biāo)縮短為原來的一半(縱坐標(biāo)不變)可以得到,所以④錯;填①③.15、①.②.【解析】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,設(shè)點、,根據(jù)銳角三角函數(shù)的定義可得出點、的坐標(biāo),然后利用平面向量數(shù)量積的坐標(biāo)運算和二倍角的正弦公式可求出的取值范圍.【詳解】分別過點作、軸的垂線,垂足點分別為、,過點分別作、軸的垂線,垂足點分別為、,如下圖所示:則,設(shè)點、,則,,,.當(dāng)時,,,則點;由上可知,,,則,因此,的取值范圍是.故答案為:;.【點睛】本題考查點的坐標(biāo)的計算,同時也考查了平面向量數(shù)量積的取值范圍的求解,解題的關(guān)鍵就是將點的坐標(biāo)利用三角函數(shù)表示,考查運算求解能力,屬于中等題.16、【解析】解出三點坐標(biāo),即可求得三角形面積.【詳解】由題:,,所以,,所以,.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0(2)【解析】(1)由偶函數(shù)的定義得出a的值;(2)由分離參數(shù)得,利用換元法得出的最小值,即可得出a的取值范圍【小問1詳解】因為是偶函數(shù),所以,即,故【小問2詳解】由題意知在上恒成立,則,又因為,所以,則.令,則,可得,又因為,當(dāng)且僅當(dāng)時,等號成立,所以,即a的取值范圍是18、(Ⅰ)最小正周期是,對稱軸方程為;(Ⅱ)時,函數(shù)取得最小值,最小值為-2,時,函數(shù)取得最大值,最大值為1.【解析】(Ⅰ)利用二倍角公式及輔助角公式將函數(shù)化簡,再根據(jù)正弦函數(shù)的性質(zhì)求出對稱軸及最小正周期;(Ⅱ)由的取值范圍,求出的取值范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【詳解】解:(Ⅰ)由與得所以的最小正周期是;令,解得,即函數(shù)的對稱軸為;(Ⅱ)當(dāng)時,所以,當(dāng),即時,函數(shù)取得最小值,最小值為當(dāng),即時,函數(shù)取得最大值,最大值為.19、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式組,即可求解.【小問1詳解】解:由,即,可得,可得集合.【小問2詳解】解:因為,且集合,又因為,即,當(dāng)時,即,可得,此時滿足;當(dāng)時,則滿足,解得,綜上可得,,即實數(shù)的取值范圍.20、(1)見解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根據(jù)線面垂直的判定定理可得平面;(2)取的中點,連.由,可得,又平面,所以,又,所以平面,因此就是點到平面的距離,在中,,,所以.試題解析:(1)證明:因為平面平面平面平面,平面,且,所以平面(2)取的中點,連.因為,所以,又平面,所以,又,所以平面,所以就是點到平面的距離,在中,,,所以.所以是點到平面的距離是.【方法點晴】本題主要考查、線面垂直的判定定理及面面垂直的性質(zhì)定理,屬于中檔題.解答空間幾何體中垂直關(guān)系時,一般要根據(jù)已知條件把空間中的線線、線面、面面之間垂直關(guān)系進行轉(zhuǎn)化,轉(zhuǎn)化時要正確運用有關(guān)的定理,找出足夠的條件進行推理;證明直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度企業(yè)培訓(xùn)與人才發(fā)展委托合同3篇
- 2024年特種車輛租賃合同:如救護車、貨車等2篇
- 河南省信陽市羅山縣2024-2025學(xué)年七年級上學(xué)期11月期中數(shù)學(xué)試題(解析版)
- 2024任城區(qū)人才公寓租住及物業(yè)管理服務(wù)合同3篇
- 2024年版股權(quán)轉(zhuǎn)讓居間補充協(xié)議細化版
- 2024年標(biāo)準(zhǔn)家用被褥產(chǎn)品購銷協(xié)議模板版B版
- 2024年度跨境電商外匯借款合同范本:跨境融資合同編制規(guī)范6篇
- 2025合伙承租經(jīng)營合同
- 2024事業(yè)單位聘用合同教師(含教師心理健康關(guān)懷計劃)3篇
- 2024年度商標(biāo)注冊申請商標(biāo)保護方案設(shè)計合同3篇
- 城鎮(zhèn)燃氣經(jīng)營安全重大隱患判定及燃氣安全管理專題培訓(xùn)
- 個人和企業(yè)間資金拆借合同
- 2025屆陜西省四校聯(lián)考物理高三上期末聯(lián)考試題含解析
- 重大火災(zāi)隱患判定方法
- 銀行崗位招聘筆試題及解答(某大型央企)2024年
- 外墻裝修合同模板
- 2024年《浙江省政治學(xué)考必背內(nèi)容》(修訂版)
- 2個居間人內(nèi)部合作協(xié)議書范文
- JJF(京) 3031-2024 高精度數(shù)字溫度計校準(zhǔn)規(guī)范
- (論文)大綱參考模板
- 反射療法師理論考試復(fù)習(xí)題及答案
評論
0/150
提交評論