版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山西省高平市建寧初級中學(xué)高三下學(xué)期教育質(zhì)量調(diào)研(二模)數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.2.已知,則不等式的解集是()A. B. C. D.3.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.4.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設(shè)是實數(shù),“”是“”的充分不必要條件5.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.6.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.7.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.58.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:9.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.210.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個整點(即橫、縱坐標(biāo)均為整數(shù)的點);②曲線C上任意一點到坐標(biāo)原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號是()A.①③ B.②④ C.①②③ D.②③④11.近年來,隨著網(wǎng)絡(luò)的普及和智能手機的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機抽取了名大學(xué)生進行調(diào)查,各主要用途與對應(yīng)人數(shù)的結(jié)果統(tǒng)計如圖所示,現(xiàn)有如下說法:①可以估計使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計不足的大學(xué)生使用主要玩游戲;③可以估計使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個數(shù)為()A. B. C. D.12.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_____.14.如圖,、分別是雙曲線的左、右焦點,過的直線與雙曲線的兩條漸近線分別交于、兩點,若,,則雙曲線的離心率是______.15.設(shè)數(shù)列的前n項和為,且,若,則______________.16.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內(nèi)雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設(shè),,求證:若成等差數(shù)列,則也成等差數(shù)列.18.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經(jīng)常閱讀的人數(shù)為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.20.(12分)已知圓上有一動點,點的坐標(biāo)為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標(biāo)為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.21.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.22.(10分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.2.A【解析】
構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關(guān)于原點對稱,所以圖像關(guān)于對稱.不等式等價于,等價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.3.D【解析】
由,可求出等比數(shù)列的通項公式,進而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.4.D【解析】
由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質(zhì)可判斷選項C;或,利用集合間的包含關(guān)系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.5.B【解析】
先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.6.C【解析】
計算出、,進而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.7.B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.8.C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.9.C【解析】
推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點睛】本題主要考查函數(shù)值的求法,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.10.B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.11.C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯誤;使用主要找人聊天的大學(xué)生人數(shù)為,因為,所以③正確.故選:C.【點睛】本題考查統(tǒng)計中相關(guān)命題真假的判斷,計算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.12.D【解析】
設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點睛】考查學(xué)生對幾何體的正確認(rèn)識,能通過題意了解到題目傳達的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題14.【解析】
根據(jù)三角形中位線證得,結(jié)合判斷出垂直平分,由此求得的值,結(jié)合求得的值.【詳解】∵,∴為中點,,∵,∴垂直平分,∴,即,∴,,即.故答案為:【點睛】本小題主要考查雙曲線離心率的求法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.16.【解析】
根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)3;(2);(3)見解析.【解析】
(1)依據(jù)下標(biāo)的關(guān)系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關(guān)系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,,兩式相加,,解得;(2)設(shè)等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設(shè)公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列。【點睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應(yīng)用,意在考查學(xué)生的邏輯推理,數(shù)學(xué)建模,綜合運用數(shù)列知識的能力。18.(1)見解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題意填寫列聯(lián)表,利用公式求出,比較與6.635的大小得結(jié)論;(2)由樣本數(shù)據(jù)可得經(jīng)常閱讀的人的概率是,則,根據(jù)二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)根據(jù)樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經(jīng)常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應(yīng)用,考查離散型隨機變量的數(shù)學(xué)期望的計算,考查運算求解能力,屬于基礎(chǔ)題.19.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據(jù)二面角確定點的位置,意在考查學(xué)生的空間想象能力和計算能力,也可以建立空間直角坐標(biāo)系解得答案.20.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結(jié)合垂直平分線和平行四邊形性質(zhì)可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設(shè)直線方程為,點坐標(biāo)分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結(jié)合韋達定理即可求解,而,當(dāng)重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當(dāng)直線的斜率為0時,與曲線無交點.當(dāng)直線的斜率不為0時,設(shè)過點的直線方程為,點坐標(biāo)分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設(shè)點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題21.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路工程模板施工合同
- 橄欖球俱樂部急救藥箱使用規(guī)范
- 救援設(shè)備租賃合同
- 汽車報廢處理流程
- 高爾夫球場租賃經(jīng)營合同
- 教育機構(gòu)服務(wù)質(zhì)量控制
- 教師勞動合同范本科研項目
- 果園管理服務(wù)租賃協(xié)議
- 信息技術(shù)公司員工班車使用指南
- 設(shè)計住房屋租賃合同范本
- GB/T 45089-20240~3歲嬰幼兒居家照護服務(wù)規(guī)范
- 統(tǒng)編版2024-2025學(xué)年三年級上冊語文期末情景試卷(含答案)
- 政府還款協(xié)議書(2篇)
- 院內(nèi)獲得性肺炎護理
- 領(lǐng)導(dǎo)干部個人違紀(jì)檢討書范文
- 2024年01月11344金融風(fēng)險管理期末試題答案
- 紹興文理學(xué)院元培學(xué)院《操作系統(tǒng)》2022-2023學(xué)年第一學(xué)期期末試卷
- web課程設(shè)計考勤系統(tǒng)源代碼
- 《企業(yè)文化與變革》課件
- 湖南省長沙市明德教育集團初中聯(lián)盟2020-2021學(xué)年八年級上學(xué)期期末考試地理試題
- 居家養(yǎng)老服務(wù)報價明細(xì)表
評論
0/150
提交評論