浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省杭州市蕭山三中2025屆高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲兩枚硬幣,若記出現(xiàn)“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.2.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.3.為了更好地研究雙曲線,某校高二年級的一位數(shù)學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關(guān)于該雙曲線的對稱中心對稱,且,則()A. B.C. D.4.將一枚骰子連續(xù)拋兩次,得到正面朝上的點數(shù)分別為、,記事件A為“為偶數(shù)”,事件B為“”,則的值為()A. B.C. D.5.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列6.已知命題,,則()A., B.,C., D.,7.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.69.隨機抽取甲乙兩位同學連續(xù)9次成績(單位:分),得到如圖所示的成績莖葉圖,關(guān)于這9次成績,則下列說法正確的是()A.甲成績的中位數(shù)為33 B.乙成績的極差為40C.甲乙兩人成績的眾數(shù)相等 D.甲成績的平均數(shù)低于乙成績的平均數(shù)10.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地研學旅行的情況,隨機調(diào)查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據(jù)這項調(diào)查,估計該學校到過中共一大會址研學旅行的學生大約有()人A. B.C. D.11.直線的斜率為()A.135° B.45°C.1 D.-112.酒駕是嚴重危害交通安全的違法行為.根據(jù)國家有關(guān)規(guī)定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設(shè)某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經(jīng)過的小時數(shù)約為()(參考數(shù)據(jù):,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則__________.14.已知關(guān)于的不等式恒成立,則實數(shù)的取值范圍是___________.15.直線與圓相交于A,B兩點,則的最小值為__________.16.已知橢圓的長軸在軸上,若焦距為4,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設(shè)縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程18.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.19.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值20.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值21.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.22.(10分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計算公式,把,,算出來,判斷四個選項的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A2、C【解析】根據(jù)題意求出P點坐標,代入橢圓方程中,可整理得到關(guān)于a,c的等式,進一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.3、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點縱坐標代入計算即可求得橫坐標得出結(jié)果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.4、B【解析】利用條件概率的公式求解即可.【詳解】根據(jù)題意可知,若事件為“為偶數(shù)”發(fā)生,則、兩個數(shù)均為奇數(shù)或均為偶數(shù),其中基本事件數(shù)為,,,,,,,,,,,,,,,,,,一共個基本事件,∴,而A、同時發(fā)生,基本事件有當一共有9個基本事件,∴,則在事件A發(fā)生的情況下,發(fā)生的概率為,故選:5、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.6、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.7、A【解析】根據(jù)題意,結(jié)合直線與圓的位置關(guān)系求出,即可求解.【詳解】根據(jù)題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.8、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結(jié)合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B9、D【解析】按照莖葉圖所給的數(shù)據(jù)計算即可.【詳解】由莖葉圖可知,甲的成績?yōu)椋?1,22,23,24,32,32,33,41,52,其中位數(shù)為32,眾數(shù)為32,平均數(shù)為;乙的成績?yōu)椋?0,22,31,32,35,42,42,50,52,極差為52-10=42,眾數(shù)為42,平均數(shù)為;由以上數(shù)據(jù)可知,A錯誤,B錯誤,C錯誤,D正確;故選:D.10、B【解析】作出韋恩圖,設(shè)調(diào)查的學生中去過中共一大會址研學旅行的學生人數(shù)為,根據(jù)題意求出的值,由此可得出該學校到過中共一大會址研學旅行的學生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學生中去過中共一大會址研學旅行的學生人數(shù)為,由題意可得,解的,因此,該學校到過中共一大會址研學旅行的學生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應(yīng)用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.11、D【解析】由斜截式直接看出直線斜率.【詳解】由題意得:直線斜率為-1,故選:D12、C【解析】根據(jù)題意列出不等式,利用指對數(shù)冪的互化和對數(shù)的運算公式即可解出不等式.【詳解】設(shè)該駕駛員至少需經(jīng)過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經(jīng)過約8個小時才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:14、【解析】參變分離,可得,設(shè),求導分析單調(diào)性,可得,即得解【詳解】因為,所以不等式可化為,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當時,,單調(diào)遞減;當時,,單調(diào)遞增,所以,則,即.故答案為:15、【解析】直線過定點,圓心,當時,取得最小值,再由勾股定理即可求解.【詳解】由,得,由,得直線過定點,且在圓的內(nèi)部,由圓可得圓心,半徑,當時,取得最小值,圓心與定點的距離為,則的最小值為.故答案為:.16、8【解析】根據(jù)橢圓方程列方程,解得結(jié)果.【詳解】因為橢圓的長軸在軸上,焦距為4,所以故答案為:8【點睛】本題考查根據(jù)橢圓方程求參數(shù),考查基本分析求解能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設(shè)直線方程,與拋物線聯(lián)立,利用韋達定理,即可求解.【詳解】(1)由題設(shè)知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設(shè),,顯然直線的斜率存在,故設(shè)直線的方程為,聯(lián)立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為18、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標系,不妨設(shè),則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設(shè)為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設(shè)平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為19、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標系,確定相關(guān)點坐標,進而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1)見解析;(2)【解析】(1)取中點,連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點,根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.21、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點,利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點,得到,從而得到點Q恒在直線上.【小問1詳解】證明:直線過定點,代入得:,故在圓內(nèi),故直線l與圓C相交;【小問2詳解】圓的圓心為,設(shè)點,由垂徑定理得:,即,化簡得:,點M的軌跡方程為:【小問3詳解】設(shè)點,由題意得:Q、A、B、C四點共圓,且圓的方程為:,即,與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論