版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆安徽省三人行名校聯(lián)數(shù)學高二上期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.373.設(shè)雙曲線與冪函數(shù)的圖象相交于,且過雙曲線的左焦點的直線與函數(shù)的圖象相切于,則雙曲線的離心率為()A. B.C. D.4.已知關(guān)于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.5.有這樣一道題目:“戴氏善屠,日益功倍.初日屠五兩,今三十日屠訖,向共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?"在這個問題中,該屠夫前5天所屠肉的總兩數(shù)為()A.35 B.75C.155 D.3156.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有7.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.8.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.9.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.1010.小方每次投籃的命中率為,假設(shè)每次投籃相互獨立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.11.某公司有320名員工,將這些員工編號為1,2,3,…,320,從這些員工中使用系統(tǒng)抽樣的方法抽取20人進行“學習強國”的問卷調(diào)查,若54號被抽到,則下面被抽到的是()A.72號 B.150號C.256號 D.300號12.直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的離心率為.(1)證明:;(2)若點在橢圓的內(nèi)部,過點的直線交橢圓于、兩點,為線段的中點,且.①求直線的方程;②求橢圓的標準方程.14.古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個定點,的距離之比為定值的點的軌跡是圓.人們將這個圓稱為阿波羅尼斯圓,簡稱阿氏圓.已知點,,動點滿足,記動點的軌跡為曲線,給出下列四個結(jié)論:①曲線方程為;②曲線上存在點,使得到點的距離為;③曲線上存在點,使得到點的距離大于到直線的距離;④曲線上存在點,使得到點與點的距離之和為.其中所有正確結(jié)論的序號是___________.15.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標,則完成目標的概率為_____________16.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某種機械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設(shè)備的使用年限(單位:年)與失效費(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機械設(shè)備使用8年的失效費參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,18.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀19.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點20.(12分)已知圓C經(jīng)過點,,且圓心C在直線上(1)求圓C的標準方程;(2)過點向圓C引兩條切線PD,PE,切點分別為D,E,求切線PD,PE的方程,并求弦DE的長21.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點,N是BC的中點,平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值22.(10分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)方程表示橢圓,且2,再判斷必要不充分條件即可.【詳解】解:方程表示橢圓滿足,解得,且2所以“”是“方程表示橢圓”的必要不充分條件.故選:B2、C【解析】直接按照等差數(shù)列項數(shù)性質(zhì)求解即可.【詳解】數(shù)列的前6項之和為.故選:C.3、B【解析】設(shè)直線方程為,聯(lián)立,利用判別式可得,進而可求,再結(jié)合雙曲線的定義可求,即得.【詳解】可設(shè)直線方程為,聯(lián)立,得,由題意得,∴,,∴,即,由雙曲線定義得,.故選:B.4、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數(shù)量關(guān)系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價于,解得或.故選:A.5、C【解析】構(gòu)造等比數(shù)列模型,利用等比數(shù)列的前項和公式計算可得結(jié)果.【詳解】由題意可得該屠夫每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此前5天所屠肉的總兩數(shù)為.故選:C.【點睛】本題考查了等比數(shù)列模型,考查了等比數(shù)列的前項和公式,屬于基礎(chǔ)題.6、B【解析】由含有一個量詞的命題的否定的定義求解.【詳解】因為命題p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B7、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設(shè)弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法8、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.9、B【解析】根據(jù)等差數(shù)列的性質(zhì),以及等差數(shù)列的前項和公式,由題中條件,即可得出結(jié)果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點睛】本題主要考查等差數(shù)列的性質(zhì),以及等差數(shù)列前項和的基本量運算,屬于基礎(chǔ)題型.10、A【解析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關(guān)系,因此根據(jù)相互獨立事件以及互斥事件的概率計算公式進行求解.【詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.11、B【解析】根據(jù)系統(tǒng)抽樣分成20個小組,每組16人中抽一人,故抽到的序號相差16的整數(shù)倍,即可求解.【詳解】∵用系統(tǒng)抽樣的方法從320名員工中抽取一個容量為20的樣本∴,即每隔16人抽取一人∵54號被抽到∴下面被抽到的是54+16×6=150號,而其他選項中的數(shù)字不滿足與54相差16的整數(shù)倍,故答案為:B故選:B12、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(1)證明見解析;(2)①;②.【解析】(1)由可證得結(jié)論成立;(2)①設(shè)點、,利用點差法可求得直線的斜率,利用點斜式可得出所求直線的方程;②將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由可得出,利用平面向量數(shù)量積的坐標運算可得出關(guān)于的等式,可求出的值,即可得出橢圓的方程.【詳解】(1),,因此,;(2)①由(1)知,橢圓的方程為,即,當在橢圓的內(nèi)部時,,可得.設(shè)點、,則,所以,,由已知可得,兩式作差得,所以,所以,直線方程為,即.所以,直線的方程為;②聯(lián)立,消去可得.,由韋達定理可得,,又,而,,,解得合乎題意,故,因此,橢圓的方程為.14、①④【解析】設(shè),根據(jù)滿足,利用兩點間距離公式化簡整理,即可判斷①是否正確;由①可知,圓上的點到的距離的范圍為,進而可判斷②是否正確;設(shè),根據(jù)題意可知,再根據(jù)在曲線上,可得,由此即可判斷③是否正確;由橢圓的的定義,可知在橢圓上,再根據(jù)橢圓與曲線的位置關(guān)系,即可判斷④是否正確.【詳解】設(shè),因為滿足,所以,整理可得:,即,所以①正確;對于②中,由①可知,點在圓的外部,因為到圓心的距離,半徑為,所以圓上的點到的距離的范圍為,而,所以②不正確;對于③中,假設(shè)存在,使得到點的距離大于到直線的距離,又,到直線的距離,所以,化簡可得,又,所以,即,故假設(shè)不成立,故③不正確;對于④中,假設(shè)存在這樣的點,使得到點與點的距離之和為,則在以點與點為焦點,實軸長為的橢圓上,即在橢圓上,易知橢圓與曲線有交點,故曲線上存在點,使得到點與點的距離之和為;所以④正確.故答案為:①④.15、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標的概率為.故答案為:16、①.3②.5【解析】根據(jù)莖葉圖進行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設(shè)備使用8年的失效費為6.3萬元18、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形19、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當直線MN斜率不存在時,設(shè)直線方程為,則,,,,則,∴,此時直線MN的方程為當直線MN斜率存在時,設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。20、(1)(2)或,【解析】(1)設(shè)圓心,根據(jù)圓心在直線上及圓過兩點建立方程求解即可;(2)分切線的斜率存在與不存在分類討論,利用圓心到切線的距離等于半徑求解,再根據(jù)圓的切線的幾何性質(zhì)求弦長即可.【小問1詳解】設(shè)圓心,因為圓心C在直線上,所以①因為A,B是圓上的兩點,所以,所以,即②聯(lián)立①②
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年考古發(fā)掘項目土方清理與保護合同3篇
- 2025版信息安全保密協(xié)議合同5篇
- 二零二五年房地產(chǎn)項目配套基礎(chǔ)設(shè)施建設(shè)合同3篇
- 二零二五年度智能交通管理系統(tǒng)免責協(xié)議范本4篇
- 2025版鋁材回收利用項目合作協(xié)議4篇
- 2025年度殘疾人勞動合同簽訂中的殘疾人權(quán)益保障與就業(yè)促進2篇
- 2025餐飲企業(yè)員工勞動合同15篇
- 2025年度商業(yè)廣場墻面LED廣告屏租賃合同標的協(xié)議4篇
- 2024食用油倉儲物流服務合作合同3篇
- 標識標牌施工質(zhì)量保障合同(2025年度)3篇
- 2025年浙江省湖州市湖州職業(yè)技術(shù)學院招聘5人歷年高頻重點提升(共500題)附帶答案詳解
- ZK24600型平旋盤使用說明書(環(huán)球)
- 城市基礎(chǔ)設(shè)施維修計劃
- 2024山西廣播電視臺招聘專業(yè)技術(shù)崗位編制人員20人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 新材料行業(yè)系列深度報告一:新材料行業(yè)研究框架
- 人教版小學英語各冊單詞表(帶英標)
- 廣東省潮州市潮安區(qū)2023-2024學年六年級上學期期末考試數(shù)學試題
- 鄉(xiāng)村治理中正式制度與非正式制度的關(guān)系解析
- 智能護理:人工智能助力的醫(yī)療創(chuàng)新
- 國家中小學智慧教育平臺培訓專題講座
- 5G+教育5G技術(shù)在智慧校園教育專網(wǎng)系統(tǒng)的應用
評論
0/150
提交評論