試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第1頁(yè)
試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第2頁(yè)
試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第3頁(yè)
試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第4頁(yè)
試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試題山西省懷仁市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁2.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.3.中國(guó)古代數(shù)學(xué)名著九章算術(shù)中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之栗五斗羊主曰:“我羊食半馬”馬主曰:“我馬食半?!苯裼斨?,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗的主人要求賠償5斗栗羊主人說:“我羊所吃的禾苗只有馬的一半”馬主人說:“我馬所吃的禾苗只有牛的一半”打算按此比率償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還栗a升,b升,c升,1斗為10升,則下列判斷正確的是A.a,b,c依次成公比為2的等比數(shù)列,且B.a,b,c依次成公比為2的等比數(shù)列,且C.a,b,c依次成公比為的等比數(shù)列,且D.a,b,c依次成公比為的等比數(shù)列,且4.已知數(shù)列滿足,且,,則()A. B.C. D.5.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現(xiàn)有一根金杖,長(zhǎng)5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構(gòu)成等差數(shù)列,其中重量為,則的值為()A.4 B.12C.15 D.186.過拋物線的焦點(diǎn)作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.647.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.8.離心率為,長(zhǎng)軸長(zhǎng)為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或9.如圖,在四棱錐中,平面,底面是正方形,,則下列數(shù)量積最大的是()A. B.C. D.10.設(shè)命題,則為()A. B.C. D.11.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高二被抽取的人數(shù)為人,那么高三被抽取的人數(shù)為()A. B.C. D.12.拋物線的焦點(diǎn)坐標(biāo)是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中項(xiàng)的系數(shù)為______.(結(jié)果用數(shù)值表示)14.定義點(diǎn)到曲線的距離為該點(diǎn)與曲線上所有點(diǎn)之間距離的最小值,則點(diǎn)到曲線距離為___________.15.已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)為,直線交橢圓于兩點(diǎn).若,點(diǎn)到直線的距離不小于,則橢圓的離心率的取值范圍是______________16.已知向量,,若向量與向量平行,則實(shí)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.18.(12分)為落實(shí)國(guó)家扶貧攻堅(jiān)政策,某地區(qū)應(yīng)上級(jí)扶貧辦的要求,對(duì)本地區(qū)所有貧困戶每年年底進(jìn)行收入統(tǒng)計(jì),下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計(jì)數(shù)據(jù):(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標(biāo)系中畫出A貧困戶的人均年純收入關(guān)于年份代碼的散點(diǎn)圖;(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并估計(jì)A貧困戶在年能否脫貧.(注:假定脫貧標(biāo)準(zhǔn)為人均年純收入不低于元)參考公式:,參考數(shù)據(jù):,.19.(12分)已知p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,.(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.20.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點(diǎn)在線段含端點(diǎn)上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.21.(12分)已知數(shù)列是遞增的等比數(shù)列,是其前n項(xiàng)和,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)已知圓C的圓心在直線上,且圓C經(jīng)過,兩點(diǎn).(1)求圓C的標(biāo)準(zhǔn)方程.(2)設(shè)直線與圓C交于A,B(異于坐標(biāo)原點(diǎn)O)兩點(diǎn),若以AB為直徑的圓過原點(diǎn),試問直線l是否過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若否,請(qǐng)說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對(duì)幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D2、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于0恒成立,進(jìn)而求出結(jié)果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A3、D【解析】由條件知,,依次成公比為的等比數(shù)列,三者之和為50升,根據(jù)等比數(shù)列的前n項(xiàng)和,即故答案為D.4、A【解析】由已知兩個(gè)不等式,利用“兩邊夾”思想求得,然后利用累加法可求得【詳解】∵,∴,∴,又,∴,即,∴故選:A【點(diǎn)睛】本題考查數(shù)列的遞推式,由遞推式的特征,采用累加法求得數(shù)列的項(xiàng).解題關(guān)鍵是利用“兩邊夾”思想求解5、C【解析】先求出公差,再利用公式可求總重量.【詳解】設(shè)頭部一尺重量為,其后每尺重量依次為,由題設(shè)有,,故公差為.故中間一尺的重量為所以這5項(xiàng)和為.故選:C.6、B【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo),分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長(zhǎng)公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點(diǎn),設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當(dāng)且僅當(dāng),即時(shí)取等號(hào).所以的最小值為.故選:B7、A【解析】由三視圖可知該幾何體是一個(gè)三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計(jì)算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個(gè)三棱錐,放入棱長(zhǎng)為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點(diǎn)睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題8、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同9、B【解析】設(shè),根據(jù)線面垂直的性質(zhì)得,,,,根據(jù)向量數(shù)量積的定義逐一計(jì)算,比較可得答案.【詳解】解:設(shè),因?yàn)槠矫妫?,,,,又底面是正方形,所以,,?duì)于A,;對(duì)于B,;對(duì)于C,;對(duì)于D,,所以數(shù)量積最大的是,故選:B.10、D【解析】利用含有一個(gè)量詞的命題的否定的定義判斷.【詳解】因?yàn)槊}是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D11、C【解析】利用分層抽樣求出的值,進(jìn)而可求得高三被抽取的人數(shù).【詳解】由分層抽樣可得,可得,設(shè)高三所抽取的人數(shù)為,則,解得.故選:C.12、C【解析】化為標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)公式求解.【詳解】拋物線的標(biāo)準(zhǔn)方程為,所以拋物線的焦點(diǎn)在軸上,且,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求解出該二項(xiàng)式展開式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開式的系數(shù).【詳解】展開式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.14、2【解析】設(shè)出曲線上任意一點(diǎn),利用兩點(diǎn)間距離公式表達(dá)出,利用基本不等式求出最小值.【詳解】當(dāng)時(shí),顯然不成立,故,此時(shí),設(shè)曲線任意一點(diǎn),則,其中,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí)即為最小值.故答案為:215、【解析】設(shè)左焦點(diǎn)為,連接,.則四邊形是平行四邊形,可得.設(shè),由點(diǎn)M到直線l的距離不小于,即有,解得.再利用離心率計(jì)算公式即可得出范圍【詳解】設(shè)左焦點(diǎn)為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點(diǎn)睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題16、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導(dǎo)由求解.(2)將時(shí),恒成立,轉(zhuǎn)化為時(shí),恒成立,令用導(dǎo)數(shù)法由求解即可.【詳解】(1)因?yàn)楹瘮?shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因?yàn)闀r(shí),恒成立,所以時(shí),恒成立,令則令因?yàn)闀r(shí),恒成立,所以在單調(diào)遞減.當(dāng)時(shí),在單調(diào)遞減,故符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求;當(dāng)時(shí),單調(diào)遞減,故存在使得則當(dāng)時(shí)單調(diào)遞增,不符合要求.綜上.【點(diǎn)睛】方法點(diǎn)睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;18、(1)散點(diǎn)圖見解析;(2),能夠脫貧.【解析】(1)直接畫出點(diǎn)即可;(2)利用公式求出與,即可求出,把代入即可估計(jì)出A貧困戶在2021年能否脫貧.【小問1詳解】畫出y關(guān)于x的散點(diǎn)圖,如圖所示:【小問2詳解】根據(jù)表中數(shù)據(jù),計(jì)算,,又因?yàn)?,,所以,,關(guān)于的線性回歸方程,當(dāng)時(shí),(百元),估計(jì)年A貧困戶人均年純收入達(dá)到元,能夠脫貧.19、(1)(2)【解析】(1)根據(jù)命題p為真命題,可得,解之即可得解;(2)若p是q的充分不必要條件,則,列出不等式組,解之即可得出答案.【小問1詳解】解:命題p:關(guān)于x的方程至多有一個(gè)實(shí)數(shù)解,∴,解得,∴實(shí)數(shù)a的取值范圍是;【小問2詳解】解:命題,∵p是q的充分不必要條件,∴,∴,且兩式等號(hào)不能同時(shí)取得,解得,∴實(shí)數(shù)m的取值范圍是.20、(1)證明見解析(2)點(diǎn)與點(diǎn)重合時(shí),二面角的余弦值為【解析】(1)先利用平面幾何知識(shí)和余弦定理得到及各邊長(zhǎng)度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標(biāo)系,設(shè),寫出相關(guān)點(diǎn)的坐標(biāo),得到相關(guān)向量的坐標(biāo),利用平面的法向量夾角求出二面角的余弦值,再通過二次函數(shù)的最值進(jìn)行求解.【小問1詳解】證明:在梯形中,因?yàn)?,,又因?yàn)?,所?,所以,即,解得,,所以,即.因?yàn)槠矫?,平面,所以,而平面平面,所以平?因?yàn)?,所以平?【小問2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系(如圖所示),設(shè),則,所以,設(shè)為平面的一個(gè)法向量,由得,取,則,又是平面的一個(gè)法向量,設(shè)平面與平面所成銳二面角為,所以因?yàn)?,所以?dāng)時(shí),有最小值為,所以點(diǎn)與點(diǎn)重合時(shí),平面與平面所成二面角最大,此時(shí)二面角的余弦值為.21、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公比即可計(jì)算得解.(2)由(1)的結(jié)論求出,然后利用分組求和方法求解作答.【小問1詳解】設(shè)等比數(shù)列的公比為q,而,且是遞增數(shù)列,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論