版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東聊城市2025屆數(shù)學(xué)高一上期末經(jīng)典模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則2.函數(shù)的部分圖象大致是圖中的()A.. B.C. D.3.設(shè)命題:,則的否定為()A. B.C. D.4.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則當(dāng)時,的表達(dá)式是()A. B.C. D.5.設(shè)集合,,則()A B.C. D.6.已知是定義在區(qū)間上的奇函數(shù),當(dāng)時,.則關(guān)于的不等式的解集為A. B.C. D.7.為了預(yù)防信息泄露,保證信息的安全傳輸,在傳輸過程中都需要對文件加密,有一種加密密鑰密碼系統(tǒng),其加密、解密原理為:發(fā)送方由明文→密文(加密),接收方由密文→明文.現(xiàn)在加密密鑰為,如“4”通過加密后得到密文“2”,若接受方接到密文“”,則解密后得到的明文是()A. B.C.2 D.8.函數(shù)的零點所在的大致區(qū)間是A. B.C. D.9.若點在角的終邊上,則()A. B.C. D.10.4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機(jī)抽取2張,則取出的2張卡片的數(shù)字之積為偶數(shù)的概率為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知定義在上的偶函數(shù)在上遞減,且,則不等式的解集為__________12.函數(shù)的最大值為().13.定義在R上的奇函數(shù)f(x)周期為2,則__________.14.已知函數(shù)的圖象(且)恒過定點P,則點P的坐標(biāo)是______,函數(shù)的單調(diào)遞增區(qū)間是__________.15.已知函數(shù)在上的最大值為2,則_________16.若,則實數(shù)____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓過三個點.(1)求圓的方程;(2)過原點的動直線與圓相交于不同的兩點,求線段的中點的軌跡.18.已知函數(shù).(1)求函數(shù)的最大值及相應(yīng)的取值;(2)方程在上有且只有一個解,求實數(shù)的取值范圍;(3)是否存在實數(shù)滿足對任意,都存在,使成立.若存在,求的取值范圍;若不存在,說明理由.19.已知,,當(dāng)k為何值時.(1)與垂直?(2)與平行?平行時它們是同向還是反向?20.2021年新冠肺炎疫情仍在世界好多國家肆虐,并且出現(xiàn)了傳染性更強的“德爾塔”、“拉姆達(dá)”、“奧密克戎”變異毒株,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環(huán)境的影響,時而也會出現(xiàn)一些散發(fā)病例,故而抗疫形勢依然艱巨,日常防護(hù)依然不能有絲毫放松.某科研機(jī)構(gòu)對某變異毒株在一特定環(huán)境下進(jìn)行觀測,每隔單位時間進(jìn)行一次記錄,用表示經(jīng)過單位時間的個數(shù),用表示此變異毒株的數(shù)量,單位為萬個,得到如下觀測數(shù)據(jù):123456(萬個)1050250若該變異毒株的數(shù)量(單位:萬個)與經(jīng)過個單位時間的關(guān)系有兩個函數(shù)模型與可供選擇.(1)判斷哪個函數(shù)模型更合適,并求出該模型的解析式;(2)求至少經(jīng)過多少個單位時間該病毒的數(shù)量不少于1億個.(參考數(shù)據(jù):)21.已知直線l的方程為2x-y+1=0(1)求過點A3,2,且與直線l垂直的直線l(2)求與直線l平行,且到點P3,0的距離為5的直線l
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】A項,可能相交或異面,當(dāng)時,存在,,故A項錯誤;B項,可能相交或垂直,當(dāng)
時,存在,,故B項錯誤;C項,可能相交或垂直,當(dāng)
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).2、D【解析】根據(jù)函數(shù)的奇偶性及函數(shù)值得符號即可得到結(jié)果.【詳解】解:函數(shù)的定義域為R,即∴函數(shù)為奇函數(shù),排除A,B,當(dāng)時,,排除C,故選:D【點睛】函數(shù)識圖常用的方法(1)定性分析法:通過對問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題3、B【解析】本題根據(jù)題意直接寫出命題的否定即可.【詳解】解:因為命題:,所以的否定:,故選:B【點睛】本題考查含有一個量詞的命題的否定,是基礎(chǔ)題.4、D【解析】利用函數(shù)的奇偶性求在上的表達(dá)式.【詳解】令,則,故,又是定義在上的奇函數(shù),∴.故選:D.5、C【解析】利用集合的交集運算求解.【詳解】因為集合,,所以,故選:C6、A【解析】分析:根據(jù)函數(shù)奇偶性的性質(zhì)將不等式進(jìn)行轉(zhuǎn)化為一般的不等式求解即可詳解:∵,函數(shù)f(x)為奇函數(shù),∴,又f(x)是定義在[?1,1]上的減函數(shù),∴,即,解得∴不等式的解集為故選A點睛:解題的關(guān)鍵是根據(jù)函數(shù)的奇偶性將不等式化為或的形式,然后再根據(jù)單調(diào)性將函數(shù)不等式化為一般的不等式求解,解題時不要忘了函數(shù)定義域的限制7、A【解析】根據(jù)題意中給出的解密密鑰為,利用其加密、解密原理,求出的值,解方程即可求解.【詳解】由題可知加密密鑰為,由已知可得,當(dāng)時,,所以,解得,故,顯然令,即,解得,即故選:A.8、C【解析】分別求出的值,從而求出函數(shù)的零點所在的范圍【詳解】由題意,,,所以,所以函數(shù)的零點所在的大致區(qū)間是,故選C.【點睛】本題考察了函數(shù)的零點問題,根據(jù)零點定理求出即可,本題是一道基礎(chǔ)題9、A【解析】利用三角函數(shù)的定義可求得結(jié)果.【詳解】由三角函數(shù)定義可得.故選:A.10、D【解析】從4張卡片上分別寫有數(shù)字1,2,3,4中隨機(jī)抽取2張的基本事件有:12,13,14,23,24,34,一共6種,其中數(shù)字之積為偶數(shù)的有:12,14,23,24,34一共有5種,所以取出的2張卡片的數(shù)字之積為偶數(shù)的概率為,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為,而為偶函數(shù),故,故原不等式等價于,也就是,所以即,填點睛:對于偶函數(shù),有.解題時注意利用這個性質(zhì)把未知區(qū)間的性質(zhì)問題轉(zhuǎn)化為已知區(qū)間上的性質(zhì)問題去處理12、【解析】利用可求最大值.【詳解】因為,即,,取到最小值;所以函數(shù)的最大值為.故答案為:.【點睛】本題主要考查三角函數(shù)的最值問題,借助正弦函數(shù)的值域能方便求解,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).13、0【解析】以周期函數(shù)和奇函數(shù)的性質(zhì)去求解即可.【詳解】因為是R上的奇函數(shù),所以,又周期為2,所以,又,所以,故,則對任意,故故答案為:014、①.②.【解析】令,求得,即可得到函數(shù)的圖象恒過定點;令,求得函數(shù)的定義域為,利用二次函數(shù)的性質(zhì),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,即可求解.【詳解】由題意,函數(shù)(且),令,即,可得,即函數(shù)的圖象恒過定點,令,即,解得,即函數(shù)的定義域為,又由函數(shù)的圖象開口向下,對稱軸的方程為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)的遞增區(qū)間為.故答案為:;.15、1【解析】先求導(dǎo)可知原函數(shù)在上單調(diào)遞增,求出參數(shù)后即可求出.【詳解】解:在上在上單調(diào)遞增,且當(dāng)取得最大值,可知故答案為:116、5##【解析】根據(jù)題中條件,由元素與集合之間的關(guān)系,得到求解,即可得出結(jié)果.【詳解】因為,所以,解得.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)圓的方程為,列出方程組,求得的值,即可求得圓的方程;(2)根據(jù)題意得到,得出在以為直徑的圓上,得到以為直徑的圓的方程,再聯(lián)立兩圓的方程組,求得交點坐標(biāo),即可得到點的軌跡方程.【小問1詳解】解:設(shè)圓的方程為,因為圓過三個點,可得,解得,所以圓的方程為,即.【小問2詳解】解:因為為線段的中點,且,所以在以為直徑的圓上,以為直徑的圓的方程為,聯(lián)立方程組,解得或,所以點的軌跡方程為.18、(1)2,(2)或(3)存在,【解析】(1)由三角恒等變換化簡函數(shù),再根據(jù)正弦函數(shù)性質(zhì)可求得答案;(2)將問題轉(zhuǎn)化為函數(shù)與函數(shù)在上只有一個交點.由函數(shù)的單調(diào)性和最值可求得實數(shù)的取值范圍;(3)由(1)可知,由已知得,成立,令,其對稱軸,分,,討論函數(shù)的最小值,建立不等式,求解即可.【小問1詳解】解:由得.令,解得,∴函數(shù)的最大值為2,此時;【小問2詳解】解:方程在上有且有一個解,即函數(shù)與函數(shù)在上只有一個交點.∵,∴.∵函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且,,.∴或;【小問3詳解】解:由(1)可知,∴.實數(shù)滿足對任意,都存在,使得成立,即成立,令,其對稱軸,∵,∴①當(dāng)時,即,,∴;②當(dāng),即時,,∴;③當(dāng),即時,,∴.綜上可得,存在滿足題意的實數(shù),的取值范圍是.19、(1)(2),反向【解析】(1)計算得到,,計算得到答案.(2)根據(jù)得到,計算并判斷方向得到答案,【詳解】(1);,得,(2),得,此時,所以方向相反.【點睛】本題考查了向量的平行和垂直,意在考查學(xué)生的計算能力.20、(1)選擇函數(shù)更合適,解析式為(2)11個單位【解析】(1)將,和,分別代入兩種模型求解解析式,再根據(jù)時的值估計即可;(2)根據(jù)題意,進(jìn)而結(jié)合對數(shù)運算求解即可.【小問1詳解】若選,將,和,代入得,解得得將代入,,不符合題意若選,將,和,代入得,解得得將代入得,符合題意綜上:所以選擇函數(shù)更合適,解析式為【小問2詳解】解:設(shè)至少需要個單位時間,則,即兩邊取對數(shù):因為,所以的最小值為11至少經(jīng)過11個單位時間不少于1億個2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八下期末考拔高測試卷(3)(解析版)
- 《色彩的聯(lián)想》課件
- 《廉政專題教育講座》課件
- 教育培訓(xùn)行業(yè)前臺接待總結(jié)
- 樂器店前臺崗位職責(zé)總結(jié)
- 2023年-2024年員工三級安全培訓(xùn)考試題附答案【預(yù)熱題】
- 2023年-2024年安全管理人員安全教育培訓(xùn)試題及答案典型題
- 2023年-2024年項目部治理人員安全培訓(xùn)考試題及答案高清
- 1994年安徽高考語文真題及答案
- 1993年福建高考語文真題及答案
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗的標(biāo)準(zhǔn)大氣條件
- 《家居顏色搭配技巧》課件
- 鐵三角管理辦法(試行)
- 高考小說閱讀分類導(dǎo)練:詩化小說(知識導(dǎo)讀+強化訓(xùn)練+答案解析)
- 《公司法培訓(xùn)》課件
- 全國教育科學(xué)規(guī)劃課題申報書:83.《供需適配性理論視域下我國老年教育資源供需匹配度研究》
- 民用航空器-世界主要機(jī)型介紹
- 經(jīng)驗教訓(xùn)記錄
- 【語文】江蘇省蘇州市星海小學(xué)小學(xué)三年級上冊期末試題(含答案)
- 設(shè)計圖紙成品校審記錄單
- 電動牽引車設(shè)備安全操作規(guī)定
評論
0/150
提交評論