安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省宣城2025屆高一數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于任意實數(shù),給定下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則2.若,,,則a,b,c之間的大小關(guān)系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c3.將函數(shù)圖象向左平移個單位,所得函數(shù)圖象的一個對稱中心是()A. B.C. D.4.已知是的三個內(nèi)角,設(shè),若恒成立,則實數(shù)的取值范圍是()A. B.C. D.5.若點在函數(shù)的圖像上,則A.8 B.6C.4 D.26.在中,若,則的形狀為()A.等邊三角形 B.直角三角形C.鈍角三角形 D.不含角的等腰三角形7.命題“”的否定是:()A. B.C. D.8.已知函數(shù)的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為()A. B.C. D.9.設(shè)集合,,則集合與集合的關(guān)系是()A. B.C. D.10.若不計空氣阻力,則豎直上拋的物體距離拋出點的高度h(單位:)與時間t(單位:)滿足關(guān)系式(取,為上拋物體的初始速度).一同學(xué)在體育課上練習(xí)排球墊球,某次墊球,排球離開手臂豎直上拋的瞬時速度,則在不計空氣阻力的情況下,排球在墊出點2m以上的位置大約停留()A.1 B.1.5C.1.8 D.2.2二、填空題:本大題共6小題,每小題5分,共30分。11.在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點是B,點和點的中點是E,則___________.12.過點P(4,2)并且在兩坐標(biāo)軸上截距相等的直線方程為(化為一般式)________.13.①函數(shù)y=sin2x的單調(diào)增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________14.已知函數(shù),則滿足的實數(shù)的取值范圍是__15.若在上是減函數(shù),則a的最大值是___________.16.已知,且,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.計算(1);(2)計算:;(3)已知,求.18.如圖,在三棱柱中,平面,,在線段上,,.(1)求證:;(2)試探究:在上是否存在點,滿足平面,若存在,請指出點的位置,并給出證明;若不存在,說明理由.19.已知函數(shù)是奇函數(shù)(1)求a的值,并根據(jù)定義證明函數(shù)在上單調(diào)遞增;(2)求的值域20.已知函數(shù)定義域為,若對于任意的,都有,且時,有.(1)判斷并證明函數(shù)的奇偶性;(2)判斷并證明函數(shù)的單調(diào)性;(3)若對所有,恒成立,求的取值范圍.21.設(shè)函數(shù).(1)若在區(qū)間上的最大值為,求的取值范圍;(2)若在區(qū)間上有零點,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用特殊值判斷A、B、D,根據(jù)不等式的性質(zhì)證明C;【詳解】解:對于A:當(dāng)時,若則,故A錯誤;對于B:若,,,,滿足,則,,不成立,故B錯誤;對于C:若,則,所以,故C正確;對于D:若,滿足,但是,故D錯誤;故選:C2、C【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出【詳解】∵a=22.5>1,<0,,∴a>c>b,故選C【點睛】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題3、D【解析】先由函數(shù)平移得解析式,再令,結(jié)合選項即可得解.【詳解】將函數(shù)圖象向左平移個單位,可得.令,解得.當(dāng)時,有對稱中心.故選D.【點睛】本題主要考查了函數(shù)的圖像平移及正弦型三角函數(shù)的對稱中心的求解,考查了學(xué)生的運算能力,屬于基礎(chǔ)題.4、D【解析】先化簡,因為恒成立,所以恒成立,即恒成立,所以,故選D.考點:三角函數(shù)二倍角公式、降次公式;5、B【解析】由已知利用對數(shù)的運算可得tanθ,再利用倍角公式及同角三角函數(shù)基本關(guān)系的運用化簡即可求值【詳解】解:∵點(8,tanθ)在函數(shù)y=的圖象上,tanθ,∴解得:tanθ=3,∴2tanθ=6,故選B【點睛】本題主要考查了對數(shù)的運算性質(zhì),倍角公式及同角三角函數(shù)基本關(guān)系的運用,屬于基礎(chǔ)題6、B【解析】利用三角形的內(nèi)角和,結(jié)合差角的余弦公式,和角的正弦公式,即可得出結(jié)論【詳解】解:由題意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故選:B【點睛】本題考查差角的余弦公式,和角的正弦公式,考查學(xué)生的計算能力,屬于基礎(chǔ)題7、A【解析】由特稱命題的否定是全稱命題,可得出答案.【詳解】根據(jù)特稱命題的否定是全稱命題,可知命題“”的否定是“”.故選:A.8、C【解析】先根據(jù)圖象求出,得到的解析式,再根據(jù)整體代換法求出其對稱中心,賦值即可得出答案【詳解】由圖可知,,,∴,∴當(dāng)時,,即令,解得當(dāng)時,可得函數(shù)圖象的一個對稱中心為故選:C.【點睛】本題主要通過已知三角函數(shù)的圖像求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.利用利用圖象先求出周期,用周期公式求出,利用特殊點求出,正確求是解題的關(guān)鍵.求解析式時,求參數(shù)是確定函數(shù)解析式的關(guān)鍵,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點,用五點法求值時,往往以尋找“五點法”中的第一個點為突破口,“第一點”(即圖象上升時與軸的交點)時;“第二點”(即圖象的“峰點”)時;“第三點”(即圖象下降時與軸的交點)時;“第四點”(即圖象的“谷點”)時;“第五點”時.9、D【解析】化簡集合、,進而可判斷這兩個集合的包含關(guān)系.【詳解】因為,,因此,.故選:D.10、D【解析】將,代入,得出時間t,再求間隔時間即可.【詳解】解:將,代入,得,解得,所以排球在墊出點2m以上的位置大約停留.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先利用對稱性求得點B坐標(biāo),再利用中點坐標(biāo)公式求得點E坐標(biāo),然后利用兩點間距離公式求解.【詳解】因為點關(guān)于平面的對稱點是,點和點的中點是,所以,故答案為:12、或【解析】根據(jù)直線在兩坐標(biāo)軸上截距相等,則截距可能為也可能不為,再結(jié)合直線方程求法,即可對本題求解【詳解】由題意,設(shè)直線在兩坐標(biāo)軸上的截距均為,當(dāng)時,設(shè)直線方程為:,因為直線過點,所以,即,所以直線方程為:,即:,當(dāng)時,直線過點,且又過點,所以直線的方程為,即:,綜上,直線的方程為:或.故答案為:或【點睛】本題考查直線方程的求解,考查能力辨析能力,應(yīng)特別注意,截距相等,要分截距均為和均不為兩種情況分別討論.13、①④【解析】①由,解得.可得函數(shù)單調(diào)增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調(diào)性;③由,即可得出函數(shù)的最小正周期;④利用誘導(dǎo)公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調(diào)增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調(diào)性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題14、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1討論,當(dāng),解得當(dāng),不存在,當(dāng)時,,解得,故x的范圍為【點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等15、【解析】求出導(dǎo)函數(shù),然后解不等式確定的范圍后可得最大值【詳解】由題意,,,,,,,∴,的最大值為故答案為:【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查兩角和與差的正弦公式,考查正弦函數(shù)的性質(zhì),根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系列不等式求解即可.16、##【解析】由,應(yīng)用誘導(dǎo)公式,結(jié)合已知角的范圍及正弦值求,即可得解.【詳解】由題設(shè),,又,即,且,所以,故.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)(2)根據(jù)分?jǐn)?shù)指數(shù)冪的定義,及指數(shù)的運算性質(zhì),代入計算可得答案;(3)由,可得,即,將所求平方,代入即可得答案【詳解】(1);(2)(3)∵=3,∴()2=x2+x﹣2+2=9,∴x2+x﹣2=7則()2=x2+x﹣2﹣2=5,∴【點睛】此題主要考查指對冪四則運算,熟練掌握指對冪的基本知識點很容易求解,屬于簡單題目18、(1)證明見解析;(2)答案見解析.【解析】(1)因為面,所以,結(jié)合就有面,從而.(2)取,在平面內(nèi)過作交于,連結(jié).可以證明四邊形為平行四邊形,從而,也就是平面.我們還可以在平面內(nèi)過作,交于,連結(jié).通過證明平面平面得到平面.【詳解】解析:(1)∵面,面,∴.又∵,,面,,∴面,又面,∴.(2)(法一)當(dāng)時,平面.理由如下:在平面內(nèi)過作交于,連結(jié).∵,∴,又,且,∴且,∴四邊形為平行四邊形,∴,又面,面,∴平面.(法二)當(dāng)時,平面.理由如下:在平面內(nèi)過作,交于,連結(jié).∵,面,面,∴平面,∵,∴,∴,又面,面,∴平面.又面,面,,∴平面平面.∵面,∴平面.點睛:證明線面平行,我們既可以在已知平面中找出與已知直線平行的直線,通過線面平行的判定定理去考慮,也可以利用構(gòu)造過已知直線的平面,證明該平面與已知平面平行.19、(1),證明見解析;(2).【解析】(1)由列方程求參數(shù)a,令判斷的大小關(guān)系即可證結(jié)論;(2)根據(jù)指數(shù)復(fù)合函數(shù)值域的求法,求的值域.【小問1詳解】由題設(shè),,則,∴,即,令,則,又單調(diào)遞增,∴,,,即.∴在上單調(diào)遞增,得證.小問2詳解】由,則,∴.20、(1)為奇函數(shù);證明見解析;(2)是在上為單調(diào)遞增函數(shù);證明見解析;(3)或.【解析】(1)根據(jù)已知等式,運用特殊值法和函數(shù)奇偶性的定義進行判斷即可;(2)根據(jù)函數(shù)的單調(diào)性的定義,結(jié)合已知進行判斷即可;(3)根據(jù)(1)(2),結(jié)合函數(shù)的單調(diào)性求出函數(shù)在的最大值,最后根據(jù)構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性進行求解即可.詳解】(1)∵,令,得,∴,令可得:,∴,∴為奇函數(shù);(2)∵是定義在上的奇函數(shù),由題意設(shè),則,由題意時,有,∴,∴是在上為單調(diào)遞增函數(shù);(3)∵在上為單調(diào)遞增函數(shù),∴在上的最大值為,∴要使,對所有,恒成立,只要,即恒成立;令,得,∴或.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的判斷,考查了不等式恒成立問題,考查了數(shù)學(xué)運算能力.21、(1);(2)【解析】⑴根據(jù)函數(shù)圖象可得在區(qū)間上的最大值必是和其中較大者,求解即可得到的取值范圍;⑵設(shè)方程的兩根是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論